
Thesis

Hieke Keuning

850412924

17 June 2014

Strategy-based feedback for

imperative programming exercises

Strategy-based feedback for

imperative programming exercises

INSTITUTE Open Universiteit The Netherlands

Faculty of Management, Science and Technology

Master Computer Science

STUDENT Hieke Keuning (850412924)

SUPERVISOR dr. Bastiaan Heeren

CHAIRMAN prof. dr. Johan Jeuring

PRESENTATION DATE 17 June 2014

CONTENTS

Summary ... 1

1 Introduction .. 2

1.1 Learning programming .. 2

1.2 The Ideas project ... 5

1.3 Problem statement and outline .. 5

2 Interactive domain-specific exercise assistants .. 7

2.1 Domain reasoners ... 8

2.1.1 Strategies ... 8

2.1.2 Feedback ... 9

2.1.3 Views ... 11

2.2 Ask-Elle .. 11

2.2.1 Refinement rules .. 12

2.2.2 Strategies ... 12

2.2.3 Normalisation ... 13

2.2.4 Feedback services ... 13

2.2.5 Results ... 14

3 Programming tutors ... 15

3.1 Classification and definitions ... 15

3.1.1 Focus ... 16

3.2 Programming tutors before 2000 ... 17

3.3 Recent programming tutors ... 20

3.4 Program assessment tools .. 27

3.5 Conclusion ... 29

4 Research design .. 30

4.1 Research questions ... 30

4.2 Requirements and scope ... 30

4.3 Validation ... 31

5 A domain reasoner for imperative programming ... 32

5.1 Representation of imperative programs .. 33

5.2 Strategies for imperative programming ... 37

5.2.1 Rules .. 38

5.2.2 Generating strategies .. 40

5.3 Recognising solutions .. 46

5.3.1 Similarity .. 46

5.3.2 Equivalence ... 53

5.4 Generation of strategy-based feedback .. 54

5.4.1 Diagnosis ... 54

5.4.2 Hints ... 58

5.4.3 Adapting feedback ... 59

6 Validation ... 63

6.1 Testing ... 63

6.2 Tutoring sessions... 63

6.2.1 PHP tutoring session ... 63

6.2.2 Java tutoring session ... 66

6.3 Analysing student programs .. 69

6.3.1 PHP exercise analysis ... 69

6.3.2 Java exercise analysis ... 70

6.4 Conclusion ... 77

7 Conclusion ... 78

7.1 Answers to research questions ... 78

7.2 Contributions .. 79

7.3 Discussion and relation to similar work ... 80

7.4 Future work .. 80

8 Bibliography ... 83

Strategy-based feedback for imperative programming exercises 1

SUMMARY

Ever since programming courses were introduced in schools and universities there has been active

research into intelligent tutors that support students in learning programming. The recent emergence

of large online courses and the limited availability of instructors increase the need for automated tools.

Designing a program is considered a difficult task. An important factor in learning is feedback, to

inform a student how he or she is doing and where to go next. However, the actual programming

process is often neglected in teaching methods. Our literature study on programming tutors shows that

many tutors can only deal with finished programs and are not able to help the student in building the

program step by step. Tutors are often limited to a single solution strategy for solving a programming

problem and are difficult to adjust by instructors.

We have found that the existing Ask-Elle tutor for functional programming distinguishes itself by

offering hints and feedback along the way towards a solution and is based on instructor-annotated

model solutions. Ask-Elle uses the Interactive domain-specific exercise assistants (Ideas) framework

to offer exercises and feedback services. The feedback the framework generates is based on

strategies, which are sequences of steps for solving a problem.

In this thesis we report on our research into generating adaptable feedback to guide a student step by

step towards a solution for an introductory programming problem that can be solved by multiple

strategies for imperative programming. We have developed a prototype of a programming tutor using

the Ideas framework.

We have designed an abstract syntax for simple imperative programs that includes a selection of basic

imperative language constructs, such as loops, branching statements and variable assignments. We

have developed a strategy generator that derives a programming strategy from a set of model

solutions. The strategy describes the steps to arrive at one of these models. Steps can expand a

program with new statements or gradually refine a particular expression. We incorporate alternative

paths in the strategy for both the order of steps and some allowed variants of language constructs. To

recognise even more variation, such as different variable names and expression forms, we perform a

number of transformations on the program. We use the Ask-Elle feedback services for providing hints

and diagnoses based on the strategy, while making some adjustments and additions to enable the

services for a different programming paradigm. An evaluator has been created to inspect the output of

a program. We have also implemented facilities for instructors to annotate a model solution to further

control the feedback.

We demonstrate the capabilities of the prototype in a number of tutoring sessions in which is shown

that our feedback leads the student to a correct solution. Student programs were collected during

programming courses for first-year IT-students to establish to what extent we can recognise their

solutions. We have found that we can recognise between 33% and 75% of the solutions that are

similar to a model. Our suggestions for further research include expanding the programming strategy

and improving feedback messages.

Strategy-based feedback for imperative programming exercises 2

1 INTRODUCTION

Learning how to program is becoming increasingly important. Students learn programming in

universities and colleges to become skilled software engineers. Many people, both young and old,

teach themselves programming as a hobby or a new career path. Some high schools offer

programming classes in their curricula.

Over the last few years many different initiatives

have been advocating the importance of

providing people with the opportunity to learn

how to code. Computer programming education

is being promoted actively. The underlying

justification is both idealistic (óit teaches you

how to thinkô) but also stems from the shortage

of software engineers currently and in the near

future. Whatever the underlying reasons are,

how easy is it for anyone to learn how to

program and how can students be supported in

their learning process?

This thesis describes our research on

generating feedback for students doing

programming exercises in a tutoring

environment. In this chapter we look at the

context of learning programming and the related

difficulties. We also introduce the Ideas project

that is of importance to our research. We

formulate a problem statement and provide an

outline of the remaining chapters in which we

elaborate on our research.

1.1 LEARNING PROGRAMMING

A small study examining the emotional state of

students learning to program for the first time

showed that after engaged (23%) the major emotions were confusion (22%), frustration (14%) and

boredom (12%) (Bosch, Mello, & Mills, 2013). Dehnadi & Bornat report on the high failure rate of

introductory programming courses (Dehnadi & Bornat, 2006), although Bennedsen and Caspersen

(Bennedsen & Caspersen, 2007) are more careful about this claim. Another study (McCracken,

Almstrum, & Diaz, 2001) shows that even after their first programming courses students do not know

how to program. Therefore, students need all the help they can get to acquire the necessary skills to

become successful in the field of computer science, a field that constantly asks for highly educated

people.

Difficulties. In an international survey from 2005 (Lahtinen, Ala-Mutka, & Järvinen, 2005) on the

difficulties of novices learning to program, in which over 500 students and teachers were questioned,

the following issues were considered most difficult:

¶ Understanding how to design a program to solve a certain task.

¶ Dividing functionality into procedures.

¶ Finding bugs in oneôs own programs.

FIGURE 1 APPEALS TO START LEARNING PROGRAMMING

Strategy-based feedback for imperative programming exercises 3

These findings are consistent with previous studies (Robins, Rountree, & Rountree, 2003; Soloway &

Spohrer, 1989) that emphasise the importance of program design and applying the right programming

constructs.

Teaching the actual programming process is considered important (Bennedsen & Caspersen, 2008).

The programming process consists of a number of elements, among which the incremental

development of a program by taking small steps and testing along the way. Another aspect is the

refactoring of programs to improve their quality. Bennedsen and Caspersen note that traditional

teaching methods such as textbooks and slide presentations do not cover this process. The authors

propose process recordings as a way to teach the programming process but also state a long-term

objective of programming education: óé that students learn strategies, principles, and techniques to

support the process of inventing suitable solution structures for a given programming problem.ô

At the same time learning has become more individual and is being done online more frequently. The

traditional role of the teacher is changing. Teachers have limited time to spend on their students. In

online courses, teachers do not even interact with their students in real life. A recent trend in education

is the Massive Open Online Course, or MOOC.
1
 These large-scale courses are often offered by

renowned universities and can be done entirely through the internet. These developments depend

heavily on digital tools to support the learning process.

Feedback. In the book óVisible learningô by John Hattie (Hattie, 2008) more than 800 meta-studies on

what is effective in education are analysed and summarised. Feedback has a very prominent position

in the results. In a frequently cited article by Hattie and Timperley (Hattie & Timperley, 2007) the

authors stress that the powerful influence of feedback on the learning process can either be positive or

negative. A model is proposed to clarify how feedback can be put into practice in the best way. The

findings are mainly about feedback from actual human beings, but because we want to closely mimic

this in intelligent tutoring systems, several conclusions are of interest to our research. According to the

model, the three questions that effective feedback should answer are:

¶ Where am I going? (feed up)

¶ How am I going? (feed back)

¶ Where to next? (feed forward)

These questions help learners to understand where they are right now and what has to be done to

improve or finish a given task. The authors also claim that feedback is more effective when óit builds on

changes from previous trialsô. If these characteristics can be implemented in automated feedback

systems, it will provide the student with a useful alternative to a human teacher.

Programming languages. There are many different programming languages and multiple

programming paradigms. Imperative programming is defined as the stepwise execution of commands

manipulating a program state. Its counterpart, declarative programming, is seen in the functional and

logic programming paradigms. Functional programming revolves around the evaluation of

mathematical functions, where the function is a first class value avoiding a program state. Another

popular paradigm is object-oriented programming in which communicating objects, in which data fields

and methods are encapsulated, are central.

There is no simple way to determine which programming paradigm is used the most or is most

popular. A number of initiatives try to provide some insight into language popularity. In total eleven

1
 Pappano, L. (2012). The Year of the MOOC. The New York Times. Retrieved July 03, 2013, from

http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html

http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html

Strategy-based feedback for imperative programming exercises 4

languages appear in the top ten of the TIOBE Programming Community Index for April 2014
2
 and the

PYPL PopularitY of Programming Language index in May 2014
3
 that were almost all there a year ago

as well. All languages are based on the imperative paradigm, although most languages support other

paradigms as well. It is therefore useful to focus our research on imperative programming.

Program variation. A major difficulty in creating automated tools for learning programming is the

great diversity in possible solutions. As an example, a simple programming problem is given: calculate

and print the sum of all odd positive numbers under 100. This problem can be solved in multiple ways

using constructs of an imperative programming language, for example:

// option 1
int sum1 = 0;
for (int i = 1; i < 100; i = i + 2)
{
 sum1 = sum1 + i;
}
print(sum1);

// option 2
int sum2 = 0;
for (int i = 1; i < 100; i++)
{
 if (i % 2 == 1)
 {
 sum2 = sum2 + i;
 }
}
print(sum2);

// option 3
print(pow(100/2, 2));

We can also think of many variants for any of these solutions, for example:

// variant 1
int counter = 1 ;
int sum1 = 0;
while (counter <= 100)
{
 sum1 += counter;
 counter += 2;
}
print(sum1);

// variant 2
int x = 100 / 2;
int sum2 = x * x;
print(sum2);

2
 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, retrieved May 04, 2014

3
 https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language, retrieved May 04, 2013

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language

Strategy-based feedback for imperative programming exercises 5

// variant 3
print(2500);

In this small example we can already see many syntactic differences, such as:

¶ Using a while loop instead of a for loop.

¶ Using a compound assignment operator (counter += 2) instead writing out the full assignment

(counter = counter + 2).

¶ Using a different name for a variable.

We can also identify a minor semantic difference in variant 1: looping until the counter is at least 101

instead of 100. The result is still a correct program. Also, if we swap two independent statements, do

we get a different solution? Another issue is performing a calculation in steps instead of in a single

assignment and even only printing the expected end result. Are these different solutions or simply

variants of the same solution?

1.2 THE IDEAS PROJECT

In 2003 a group from the faculty of Computer Science of the Open

Universiteit Nederland and the department of Information and Computing

Sciences of Utrecht University started research on software technology for e-

learning. This resulted in the Ideas project (Interactive domain-specific

exercise assistants), in which domain reasoners are being developed that

provide automated feedback while doing exercises in a learning

environment.
4
 Tutors have been developed for a number of different domains, such as mathematics

and functional programming. The focus is on acquiring procedural skills such as solving equations and

finding the solution to a programming problem. The Ideas project provides a framework that supports

the stepwise solving of problems. These problems can often be solved with multiple solution

strategies. Strategies can be specified using a strategy language to represent the various approaches

to tackle the problem.

1.3 PROBLEM STATEMENT AND OUTLINE

Several important issues were highlighted in the previous sections, such as the difficulty of learning

programming, the importance of feedback in the learning process and the absence of a human

instructor, demanding an automated tutor that can adopt the task of providing feedback. We also know

that students have a lot of difficulty with the design of programs and the actual programming process.

In this thesis a research project is described that contributes to reducing this problem: we want to find

out how to provide automated feedback for students solving an imperative programming problem. The

Ideas project provides us with a software framework that serves as a basis for developing tutoring

systems.

We provide an overview of the chapters of this thesis:

Chapter 2 Interactive domain-specific exercise assistants. We describe the Ideas

framework that can be used to build tutors that help students solving exercises based on a solution

strategy. We specifically focus on the tutor for functional programming that was developed using

Ideas.

4
 http://ideas.cs.uu.nl/www, retrieved May 15, 2014

http://ideas.cs.uu.nl/www

Strategy-based feedback for imperative programming exercises 6

Chapter 3 Programming tutors. A literature study has been conducted on related work on tutors

for programming. In this chapter we describe our findings and identify shortcomings in the field that we

might respond to.

Chapter 4 Research design. In this chapter we propose our research based on the problem

statement and conclusions from the literature research. We define several research questions, a

corresponding method and validation questions.

Chapter 5 A domain reasoner for imperative programming. This chapter describes in detail

the technical implementation of the tutor prototype. Knowledge of functional programming is required

to fully understand the code fragments.

Chapter 6 Validation. We describe the capabilities of our prototype with respect to the validation

questions by providing tutoring scenarios and analysing actual student data.

Chapter 7 Conclusion. We conclude with a chapter that summarises our contribution to the

research on programming tutors. We also discuss the results, the outstanding issues and propose

areas for further research.

Strategy-based feedback for imperative programming exercises 7

2 INTERACTIVE DOMAIN-SPECIFIC EXERCISE ASSISTANTS

Interactive exercise assistants assist students in doing exercises on their own without the help of an

instructor. The Ideas framework provides features to build these exercise assistants to help students

to solve problems incrementally in various domains (Heeren & Jeuring, 2009b). Many skills, such as

programming or mathematics, are acquired by learning strategies to solve exercises. These strategies

help students to progress step by step and finally arrive at an approved solution. Students receive

feedback on their progress and hints to move forward.

The Ideas framework is used for a number of different domains and their corresponding exercises:

bringing a proposition in CNF (shown in Figure 2), orthogonalizing a set of vectors, relation algebra

exercises and solving equations. To help students learn functional programming in Haskell, the tutor

Ask-Elle has been created (Gerdes, Jeuring, & Heeren, 2012). The domains for which the Ideas

framework is suitable are in general well-structured and their related problems can be solved in a

procedural way. A well-structured domain has a formal and static body of knowledge that is only

applicable in its own context, whereas ill-structured domains are more complex and variable with very

specific contexts that are difficult to predict in advance (Spiro, Coulson, Feltovich, & Anderson, 1988).

FIGURE 2 A LOGIC TUTOR

The framework generates several different kinds of feedback (Heeren, Jeuring, & Gerdes, 2010):

¶ A check if the student has performed a valid step. The student can either be warned that he or

she deviates from the proposed strategy or be forced to undo the last step.

¶ An indication of how close the student is to a solution, possibly by showing a progress bar or a

minimum number of steps.

¶ A possible next step can be presented to the student by showing a hint or even providing the

exact rule to apply.

¶ A check if the student has successfully completed the exercise.

¶ Showing the complete solution.

The levels of feedback the Ideas framework provides are based on the theory of VanLehn (Vanlehn,

2006) and Anderson (J. R. Anderson, 1993). Syntax errors or incorrectly applying some rule can also

be detected by the system, but the main focus of the Ideas framework is to guide the student in

selecting the right steps and progressing towards the solution.

Strategy-based feedback for imperative programming exercises 8

Section 2.1 of this chapter describes domain reasoners, the software that provides feedback facilities

based on strategies for a specific domain. The section is based on several publications on using

strategies for exercise assistants (Heeren & Jeuring, 2009b), (Heeren et al., 2010), (Heeren & Jeuring,

2009a), (Gerdes, Heeren, & Jeuring, 2010). Section 2.2 focuses on the implementation of a functional

programming tutor using the Ideas framework and is mainly based on two publications (Gerdes,

Jeuring, et al., 2012; Jeuring, Gerdes, & Heeren, 2012).

2.1 DOMAIN REASONERS

To create an exercise assistant based on the Ideas framework, both a user interface and a domain

reasoner should be created for a specific domain. A domain reasoner provides facilities to do

exercises in the chosen domain and to generate personalised feedback and guidance. A domain

reasoner can be built for a specific domain by implementing a number of components. The

components should be built in the functional programming language Haskell using the Ideas software

package.
5
 The functionality of the domain reasoner is provided through stateless web services and

can be used by any intelligent tutoring system.

2.1.1 STRATEGIES
The domain reasoners built on the framework are based on strategies. To specify strategies, we first

need to establish the domain and a set of rules that apply to this domain. The domain can be

described by a grammar for its abstract syntax and requires an accompanying parser to process

submitted work. An example is the domain of propositional logic that comprises expressions consisting

of variables and logic operators. An environment is maintained to store additional information,

implemented as a set of key/value pairs.

Rules are transformations on the data type of the domain, such as refining or rewriting a student

submission. An example in the logic domain is to rewrite the expression p q as ×p Ù q using the

rule of material implication. It is important to take into account the granularity of the rewrite steps. In

some domains the student has to take each step explicitly, in other domains multiple simplifications

can be done implicitly while solving the exercise step-by-step. Rules can be marked as either major or

minor. Major rules are the main rules the student may apply and can be used as hints. Minor rules are

generally more administrative.

Strategies are then used to describe the step-by-step solution to a problem. A strategy includes the

possible steps, rewrite or refinement rules, together with the order in which the steps can be taken.

For example, we can specify several strategies to solve the problem of simplifying a logical expression

as much as possible. A strategy can be described using an EDSL, an embedded domain-specific

language. The strategy description consists of a context-free grammar (CFG) and a part that is not

context-free. The non-context-free part is implemented using a programming language and provides

additional functionality.

Strategy combinators are used to compose more complex strategies. The atomic part in the CFG is a

rule. An overview of combinators and operators for rules is given in Table 1. There are also a number

of derived combinators based on the basic combinators, such as many, many1, option, try, repeat

and w (left-biased choice) and a set of traversal combinators.

5
 http://hackage.haskell.org/package/ideas, retrieved January 30, 2014

http://hackage.haskell.org/package/ideas

Strategy-based feedback for imperative programming exercises 9

NAME NOTATION EXPLANATION

Sequence s <*> t Strategy s followed by strategy t .

Choice s <|> t Strategy s or strategy t can be applied.

Interleave s <%> t The steps of strategies s and t have to be applied, but can be

interleaved, meaning the order of these steps is not relevant

(Heeren & Jeuring, 2011). The interleave operator can also be

used on sets of strategies. In this case all possible combinations

of strategies from the left and the right set are allowed.

Atomicity àsð Marks the strategy s as atomic so interleaving is prohibited.

Label label l s Adds localised feedback messages to strategies.

Recursion fix f Returns the fixed-point of a function that maps a strategy to a

new strategy.

Fail ǳ Always fails.

Succeed Ǵ Always succeeds.

Applicability ~s Specifies that the given strategy is not applicable to the current

expression.

TABLE 1 STRATEGY COMBINATORS AND OPERATORS

2.1.2 FEEDBACK
To use strategies for the actual generation of feedback, an exercise should be specified. Exercises in

the Ideas framework encompass all aspects related to a problem and the solving of that problem. The

components of an exercise are:

¶ Meta data (identification code and description).

¶ A rule set, consisting of valid rules as well as buggy rules that identify common errors.

¶ A strategy to solve the problem.

¶ An equivalence relation and a similarity relation, possibly defined as views (see Section 2.1.3).

The similarity relation is more tolerant than equivalence and used to detect correct but

insignificant steps.

¶ Predicates to check if a starting expression is suitable (pre-condition) and to detect solved

expressions (post-condition).

¶ A parser that detects syntax errors and, if necessary, a pretty-printer.

¶ Optionally, a randomised expression generator.

¶ A rule ordering function.

The domain reasoner consists of a set of exercises and a number of services to support the student

doing the exercises. We summarise some of the feedback services in Table 2.

Strategy-based feedback for imperative programming exercises 10

SERVICE EXPLANATION

EMPTY Check if the language of a strategy contains the empty sentence or a sentence

consisting of minor rules.

FIRSTS Splits a strategy into its first rule or applicability check together with the remaining

strategy.

STEP The application of a rewrite rule.

RUN Applying the rules specified in a strategy to a term. The result is a (list of)

solution(s) to the problem.

TRACE An extension of run that shows the intermediate steps.

DIAGNOSE Diagnoses an expression submitted by a student.

TABLE 2 STRATEGY SERVICES

The language that can be generated by the strategy grammar is a set of sequences of rules. These

sentences can be compared with (partial) student solutions to see if they are on the right track. The

student solution should be a prefix of a sentence or a complete sentence. The Ideas framework uses

its own strategy recogniser because existing parsers are not entirely suited to the problem of

recognising the application of rewrite rules, the detection of errors therein and the ability to provide

informative feedback. Rule ordering is used to make a choice between multiple applicable rules so the

provided feedback is deterministic.

In Table 3 the different types of diagnoses returned by the DIAGNOSE service are described. The input

to this service is the submitted term and the previous state. A state is the product of an environment,

an expression in focus (a zipper) and a strategy and is used to capture (intermediate) results. Apart

from the type of the diagnosis, additional information is returned such as a possible new state, the rule

that was applied and a boolean indicating if the student has finished the exercise. There is no new

state when the diagnosis is either óbuggyô or ónot equivalentô.

DIAGNOSIS EXPLANATION

Buggy The submitted term is not equivalent to the previous term because a buggy rule was

applied.

Not equivalent The submitted term is not equivalent to the previous term through an unknown

mistake.

Wrong rule A chosen rule is applied incorrectly.

Expected The submitted term is expected by the strategy.

Similar The submitted term is very similar to the previous submission.

Detour A rule is (correctly) applied but does not follow the strategy.

Correct Although the submitted term is equivalent to the previous, an unknown step is taken.

Unknown Not used.

TABLE 3 IDEAS DIAGNOSE TYPES

Strategy-based feedback for imperative programming exercises 11

2.1.3 VIEWS
Comparing the canonical forms of two expressions can determine if they are equivalent. A canonical

form, or normal form, is a standard way of presenting an expression. A view defines a canonical form

and consists of two functions:

¶ A match function that attempts to map an expression to a canonical form. An example is to

return an expression with a plus at top-level. As an example, 1 ï 2 will be transformed into 1 +

-2. A match function usually converts an expression into a different type, such as a tuple of

operands (1, -2) for the given example.

¶ A build function that maps a canonical form to an expression. A corresponding build function

for the previous example might be transforming the tuple (1, -2) into the expression 1 - 2.

Performing a match operation followed by a build operation results in the canonical form of an

expression. Views can also be composed of other views by using arrow-combinators (Paterson, 2003)

such as >>> for a sequence of views and *** for a parallel composition of views.

Besides equivalence checking, views are used in several ways:

¶ As a rewrite rule.

¶ To check if a term has a canonical form.

¶ To limit the set of necessary rewrite rules because the number of cases that occur greatly

decreases.

2.2 ASK-ELLE

The interactive tutor Ask-Elle supports students in doing simple exercises to learn the functional

programming language Haskell. The tutor is targeted at students in their first year of computer

science. The tutor has the following features:

¶ Providing hints at each step.

¶ Providing feedback on the progress.

¶ Providing solutions.

¶ Recognizing common errors.

The tutor can be accessed online through a web application
6
, as shown in Figure 3. The tutor is easy

to use by students and easy to customise by instructors. The student can select an exercise and solve

it step-by-step. Unfinished parts of the solution can be indicated by a ǒ-sign. Instructors can add their

own programming exercises to the tutor, together with a set of model solutions.

The Ask-Elle tutor distinguishes itself from other tutors with the following characteristics:

¶ The tutor handles incomplete programs.

¶ Performing multiple steps at once is recognised by the tutor.

¶ Feedback is calculated automatically and is based on model solutions.

¶ Correctness is determined by equivalence to a model solution.

6
 http://ideas.cs.uu.nl/ProgTutor, retrieved September 02, 2013

http://ideas.cs.uu.nl/ProgTutor

Strategy-based feedback for imperative programming exercises 12

FIGURE 3 A SCREENSHOT OF ASK-ELLE IN ACTION

A domain reasoner for the functional programming domain has been implemented for this tutor. A

Haskell compiler is used to provide syntax error and type error messages. In this section the

components of the domain reasoner are described together with the deviations and extensions to the

existing Ideas framework.

2.2.1 REFINEMENT RULES
The rules used in the functional programming domain are refinement rules, instead of the rewrite rules

that are used for mathematical domains. Refinement rules are used to make a program more

complete instead of transforming a program into a semantic equivalent when applying rewrite rules. By

applying refinement rules, holes in an expression can be replaced by new expressions. Refinement

rules refine expressions, declarations, function bindings, alternatives and patterns. Examples of rules

are introducing a variable or introducing an if-then-else construct. These new expressions can also

contain holes, for example ÉÆ ÔÈÅÎ ÅÌÓÅ . Refinement rules are atomic and cannot be divided

into smaller rules. The available rules cover all available language constructs in the abstract syntax.

Rules can be defined as minor if they should be performed together with another refinement rule.

Rules are always applied at a specific hole location in the student program. Holes are therefore tagged

with a unique identifier so rules can be matched with a location identifier.

2.2.2 STRATEGIES
The tutor considers the step-by-step, top-down application of refinement rules as the strategy to solve

functional programming exercises. Strategies can be used to secure the order in which rules are

applied. For example, some refinement rules can only be performed after another refinement rule. The

strategy for solving a programming problem is automatically derived from the set of model solutions

provided by the instructor. The strategy combines the multiple strategies from different solutions into

one strategy. This strategy is used to provide feedback. A strategy can be quite strict, which could be

a disadvantage. On the other hand, the student is guided towards a solution that is preferred by an

instructor.

Both partial and complete programs are converted into a canonical form so equivalent variants can be

taken into account. A program is correct if it follows a strategy. Two programs are similar if their

canonical forms match syntactically. If a program does not follow a known strategy, the program is

considered equivalent to the solution if it passes a number of tests. A modified version of the

QuickCheck library (Claessen & Hughes, 2000) that is able to handle partial programs is used to

check a number of properties about the program. This is not entirely reliable because checking

program equivalence is undecidable and the testing might not identify all faults in the program.

The instructor can specify feedback messages by annotating the model solutions. Information

regarding the exercise as a whole can be provided as meta-data in a configuration file. Textual

Strategy-based feedback for imperative programming exercises 13

feedback is specified in feedback scripts that are automatically generated and can be adjusted by the

instructor. Refinement rules and library functions have an accompanying feedback message.

Feedback can be adapted by the instructor in a number of ways:

¶ Providing a general description of the model solution.

¶ Specifying alternative code to a prelude (the standard Haskell library) function, so more

possible solutions will be accepted by the tutor.

¶ Enforcing the use of specific constructs in the solution.

¶ Adding localised feedback messages.

A strategy is derived by matching the language constructs in the AST with the available refinement

rules. The interleave (<%>) combinator is used to allow variation in the order of refining certain

expressions. Feedback annotations, such as an ALTERNATIVE, are included at the right locations. If

library functions are encountered, the corresponding definition will also be included in the strategy,

except when a MUSTUSE-annotation is provided by the instructor.

As an example we show an annotated model solution for reversing a list of elements:

{ - # DESC Use the prelude function foldl. # - }
 reverse =
 { - # FEEDBACK foldl takes an operator and a base value as argument. # - }
 (foldl { - # FEEDBACK Use flip and (:). # - } (flip (:)) [])

The strategy derived from this model solution is (omitting feedback labels):

 patBind
<*> pVar "reverse"
<*> app
<*> var "foldl"
<*> ((paren <*> app <*> var "flip" <*> infixApp <*> con "(:)")
 <%> con "[]"
)

2.2.3 NORMALISATION
To recognise programs that are equivalent but syntactically different, programs are converted to a

canonical form. The program transformations are independent from the strategy for the exercise. The

following transformations, based on the lambda-calculus, are performed:

¶ Inlining: replacing a call to a user-defined function by its body, dead-code elimination and

constant argument removal.

¶ Desugaring: removing syntactic sugar from programs.

¶ Ŭ-renaming: assigning a new name to all variables.

¶ ɓ-reduction: function application.

¶ ɖ-reduction: replacing a function with the form \ x - > f x by f .

2.2.4 FEEDBACK SERVICES
In Table 4 two additional strategy services are described that were added for the Ask-Elle tutor.

Strategy-based feedback for imperative programming exercises 14

SERVICE EXPLANATION

DEEPDIAGNOSE Recognises multiple steps instead of just a single next step.

TASKDESCRIPTION Returns feedback messages for all active labels.

TABLE 4 ADDITIONAL SERVICES

Each time a student asks for a hint, the partial program the student was working on will be submitted

and normalised. All refinement rules that follow the exercise strategy are applied to the previous state.

This may result in multiple programs that will all be normalised and compared to the normalised

student program. For the DEEPDIAGNOSE service a top-down parallel recogniser is used that is able to

work with programs that have the same first step (a left factor in the generated strategy). In the state,

information is added on which strategies are still possible, instead of having to choose one when the

student has only completed the overlapping part.

A challenge for the strategy recogniser is to recognise multiple steps at once. If a program contains

many holes that may be filled in any order, the number of correct next steps greatly increases. The

AST is searched depth-first attempting to reduce search time based on the location where the student

most likely proceeds. The tree can be further pruned by reducing the number of interleave options

because the order is irrelevant when recognising multiple steps.

Strategies can also be used for assessing complete Haskell programs so the instructor does not have

to grade them by hand (Gerdes, Jeuring, & Heeren, 2010). This is a different approach from most

assessment tools that use testing to check student solutions. The advantage of using strategies is that

the design is assessed and not only the outcome. It can also be proven that a student solution is

equivalent to a model solution written by an instructor, whereas proving that a program is correct

based on test results is in general impossible.

2.2.5 RESULTS
In 2011 an experiment with around 100 students using Ask-Elle was performed. The emphasis of this

experiment was on the findings of the students, who were moderately enthusiastic. The main focus of

the criticism was that not all correct solutions were recognised and that proof for an incorrect solution

was absent. In an experiment with Ask-Elle as an assessment tool, 89% of the correct programs were

recognised and no incorrect programs were marked as correct (Gerdes, Jeuring, et al., 2010). A total

of over 90 programs were assessed with only four model solutions.

Several options for further research have been proposed (Gerdes, 2012). Some are focused on the

area of usability and the didactic results. Technological improvements focus on supporting the full

Haskell standard and adding new program transformations. Research on new functionality includes

offering other types of exercises, supporting larger programs, providing better error information and

developing a tutor for other programming languages and paradigms.

Strategy-based feedback for imperative programming exercises 15

3 PROGRAMMING TUTORS

Ever since learning programming was introduced in schools and universities, many tools have been

developed to support students in learning how to program. A literature study has been conducted to

provide an overview of the evolution of programming tutors that automatically provide feedback to its

users. The characteristics and features of the tutors are identified and compared to those of the Ideas

tutors. We describe the classification of tools and problems in Section 3.1, together with some relevant

definitions. In Section 3.2 some classic and influential tutors from the 20
th
 century are examined.

Section 3.3 focuses on modern tutors. In Section 3.4 we take a closer look at program assessment

tools. Assessment tools are related to the diagnosis of student programs and are therefore of interest

to the development of programming tutors. We conclude in Section 3.5 by summarising the most

striking observations.

3.1 CLASSIFICATION AND DEFINITIONS

Tools and environments that help students learning to program come in many forms. There are a large

number of different classifications of programming tools (Deek & McHugh, 1998; Gomez-Albarran,

2005; Guzdial, 2004; Pausch & Kelleher, 2005). In 1998 Deek and McHugh (Deek & McHugh, 1998)

recognised intelligent tutoring systems (ITS) as well as intelligent programming environments as two

of the four major groups. In 2005 Gómez-Albarrán (Gomez-Albarran, 2005) proposed a different

classification. The author did not include ITSs as a distinct category because of the observation that

newer tools focus less on providing intelligent tutoring. Intelligent systems reappear in a survey of

literature on the teaching of introductory programming from 2007 (Pears, Seidman, Malmi, & Mannila,

2007), in which the following categories for tools that support teaching programming are used:

¶ Visualization tools.

¶ Automated assessment tools.

¶ Programming environments for novices, divided into programming support tools and

Microworlds.

¶ Other, including intelligent tutoring systems.

An intelligent tutoring system is a learning system that provides automated feedback or instruction to

the user of the system (Nwana, 1990). The interaction with the system should be comparable to

interaction with an actual teacher. Research on ITSs involves the domains of computer science,

cognitive psychology and education. ITSs generally consist of four different components: the expert

knowledge module (domain), the student model module, the tutoring module and the user interface.

To correctly analyse student programs, the following functionality should be provided by an ITS

(Vanneste, 1994):

¶ Handle variation in syntax.

¶ Recognise different algorithms.

¶ Recognise errors in implementations.

¶ Analyse program efficiency.

¶ Acknowledge if the system is unable to deal with a program, and direct the student to a

teacher.

¶ Generate feedback the student can understand.

Pillay (Pillay, 2003) distinguishes two major functions in ITSs. The first group of tutors helps a student

in writing a program for a certain problem. The second group of tutors focuses more on debugging and

error diagnosis. A commonly used term is intention-based diagnosis (L. Johnson, 1986), which

Strategy-based feedback for imperative programming exercises 16

identifies errors through attempting to understand what the student was trying to achieve and how he

or she wanted to achieve that, instead of just reporting on what is wrong.

In addition to the classification of tools, a classification based on the nature of a problem can also be

made. Le et al. (N.-T. Le, Loll, & Pinkwart, 2013) propose a classification of educational problems

based on their degree of ill-definedness. This classification is based on three properties of solution

spaces: alternative solution strategies, implementation variability and solution verifiability. In

programming, there are both well-defined and ill-defined problems. Moreover, programming problems

in each category can be devised, as shown in Table 5.

CLASS DEFINITION BY LE ET AL. EXAMPLE PROGRAMMING PROBLEM

1 One solution strategy, one implementation. Choose the right operators to calculate

degrees Celsius to Fahrenheit:

int f = c ? 1.8 ? 32;

2 One solution strategy, alternative implementation

variants.

Write a recursive function that calculates

the factorial of a number n.

3 A known number of typical solution strategies. Write a function that calculates the factorial

of a number n.

4 A great variability of possible solution strategies

while the correctness of any given specific

solution can be verified automatically.

Write an application that can convert

between multiple temperature scales.

5 Multiple solution strategies, and solution

correctness cannot be verified automatically.

Write a platform computer game.

TABLE 5 PROBLEM CLASSIFICATION WITH EXAMPLES

Class 1 problems are usually addressed by CAI-systems (computer aided instruction) that only have to

mark the studentôs solution as correct or incorrect. Model-tracing and constraint-based modelling

techniques are usually applied for class 2 problems. Model-tracing focuses on the process and uses

rules to model the steps a student may take to solve a problem (Kodaganallur, Weitz, & Rosenthal,

2005). Constraint-based modelling, on the other hand, focuses on the product: it models constraints as

conditions that must be met in the end result. Tutors based on constraint-based modelling are not

interested in how to arrive at the end result. Class 3 problems are strategy-based. Systems for class 4

are rare and mainly use data-mining techniques. Class 5 problems lean on heuristic techniques. The

authors observe that solutions for class 3 and 4 are the least developed although they are of great

importance for learning and developing problem-solving skills.

The main objective for this classification is twofold: it provides guidance for developers of educational

systems but it also proposes a common language to specify problems in order to gain more insight

into the capabilities of an educational system. The Ask-Elle programming tutor can be categorised in

class 3.

3.1.1 FOCUS
Considering the classification from Section 3.1, the following categories are of interest for this research

on programming tutors:

¶ Automated assessment tools.

¶ Intelligent tutoring systems.

Strategy-based feedback for imperative programming exercises 17

The tutors based on the Ideas framework, and in particular the functional programming tutor,

distinguish themselves by the following characteristics (Gerdes, Jeuring, et al., 2012):

¶ Dealing with incomplete programs.

¶ The recognition of multiple steps in a student program.

¶ Automated calculation of feedback based on model solutions.

¶ Correctness determined by equivalence to a model solution.

We examine several programming tutors considering the features mentioned above, the criteria by

(Vanneste, 1994) and the classification by Le et al (N.-T. Le et al., 2013). For this research we are

mostly interested in the knowledge model and the tutoring module of an ITS, and not the student

module and the user interface. The tutors and tools should be able to deal with class 2 or class 3

programming problems.

3.2 PROGRAMMING TUTORS BEFORE 2000

The tutors described in this section have been selected based on five publications that categorise and

review learning tools for programming (Deek & McHugh, 1998; Gomez-Albarran, 2005; Guzdial, 2004;

Pausch & Kelleher, 2005; Pillay, 2003), the frequency a certain tool appears in these publications and

the number of citations. Table 6 provides an overview of the features of the tutors that are discussed.

 THE LISP TUTOR PROUST C-TUTOR CM STRUCTURE

EDITORS

Appearance in review

articles

4/5 3/5 0/5 2/5

Google Scholar citations 179 383 49 57 (many more

to related

articles)

Main paradigm Functional Imperative Imperative Imperative

Problem classification Class 1 and 2 Class 3 Class 3 Class 2

Feedback and hints a a a ñ

Handles partial programs a, but only from left

to right

ñ ñ a

 Handles multiple steps a - - a

Knowledge base Problem and

production rules

Problem, goals,

plans, rules

Model program,

test data

Assignment

templates

Handling of syntax

variation

Unknown a, but limited

according to

(Song, Hahn,

Tak, & Kim,

1997)

a a

Handling of algorithm

variation

- Programming

plans

Goals and plans -

How to assess program

correctness

Model solution Plan extracted

from model

solution

Plan extracted

from model

solution

Model solution

TABLE 6 FEATURES OF PROGRAMMING TUTORS

Strategy-based feedback for imperative programming exercises 18

The Lisp Tutor. The Lisp Tutor was developed in the 1980s at Carnegie-Mellon University using

techniques from artificial intelligence and cognitive psychology (J. Anderson & Skwarecki, 1986). By

observing how students program, the developers created simulation models that can be used to guide

the student during programming. These models were implemented using production systems that set

goals and subgoals. The system uses model tracing to keep track of the studentsô actions.

A student working with the tutor can solve a problem step-by-step by filling in a coding template and

answering questions about the problem. The possible next steps students can take can be calculated

from the rules in the production system. The production system also contains buggy rules so the tutor

can respond to students doing something wrong.

FIGURE 4 A FRAGMENT OF THE LISP TUTOR IN ACTION

The approach was successful because using the tutor led to better results than learning to program

Lisp without it. Nevertheless a number of improvements were discussed for future development. A

known issue is the top-down, left-to-right programming style that is enforced which causes the tutor to

be inflexible and restrictive. The interaction is also limited and adding new exercises is laborious.

PROUST. PROUST is a programming tutor for learning Pascal (W. Johnson & Soloway, 1985). The

tutor analyses complete programs that solve a certain problem and returns an explanation of the

discovered bugs using programming plans. A programming plan is óa procedure or strategy for

realising intentions in codeô and is decomposed into a number of goals, as illustrated in Figure 5. One

programming problem may have different goal decompositions. PROUST tries to recognise these

plans, including erroneous plans, in the code submitted. Transformation rules are used to detect

variations in implementation.

FIGURE 5 PLANS AND GOALS USED BY PROUST

Strategy-based feedback for imperative programming exercises 19

FIGURE 6 RESPONSE BY PROUST TO A BUGGY PROGRAM

Looking at the results, the number of correctly analysed programs seems to be satisfactory (72% of

206 student solutions were completely analysed and 22% partially), although in (Gomez-Albarran,

2005) it is noted that the system has problems with analysing programs with increased complexity.

Adding a new exercise and the corresponding goals, plans and rules requires substantial work.

C-tutor. The C-Tutor is an ITS for beginners learning programming in C (Song et al., 1997). The

system consists of a learning environment and a program analyser and is based on intention-based

diagnosis. The program analyser includes a reverse engineering system and a didactic system. The

reverse engineering system generates the problem description, the intention, based on a model

program provided by an instructor. The problem description contains a hierarchy of programming

goals and plans. The student submits a solution, which is then converted into a canonical form. The

didactic system generates feedback on the solution using both dynamic and static analysis. The

system runs test cases provided by the instructor, tries to match the student program to the plans

extracted from the model solution (similar to the approach in PROUST) and reports the bugs to the

student.

The C-tutor is successful in the recognition and analysis of student programs: 93% of 240 programs

were successfully analysed. Using both static and dynamic analysis is a strong point of the tutor,

besides the easy addition of new exercises. However, the tutor is unable to guide a student through

the programming process step-by-step.

Carnegie Mellon Structure Editors. Carnegie Mellon University developed three generations of

novice programming environments, GNOME, MacGnome (Genies) and ACSE for Pascal and other

languages, starting from the 1980s (Miller, Pane, Meter, & Vorthmann, 1994). The development

focused on educational concepts such as procedural abstraction, data abstraction and reasoning

about programs. The programming environments are structure editors, in which the student builds up

an abstract syntax tree while creating a program. Parts of the tree that have not been realised yet are

Strategy-based feedback for imperative programming exercises 20

indicated by a textual placeholder. In this way all constructed programs are syntactically correct

because the tree can only be elaborated with legal operations.

The tools were successful and widely used for many years, although there was some criticism and

room for improvement. The technology was unable to adapt itself quickly to new languages. Criticism

came from computer scientists who were bothered by the lack of focus on program correctness. The

tools do not really provide feedback on the progress of a student, neither are they able to help a

student to solve a programming problem in multiple ways.

3.3 RECENT PROGRAMMING TUTORS

In this section a number of interesting and relevant tutors are discussed that were developed more

recently. Table 7 provides an overview of their features.

 JITS J-LATTE PROLOG

TUTOR

PYTHON

TUTOR

DATA-DRIVEN

PYTHON

TUTOR

Main paradigm Imperative Imperative Logic Imperative Imperative

Problem

classification

Class 3 Class 2 Class 3 Class 2 Class 3

Feedback and hints a a a a a, in

progress

Handles partial

programs

ñ a a, only on a

high level

ñ a, but with

large deltas

(save/compile

points)

Handles multiple

steps

- a a - a

Knowledge base A problem, the

required output

and a program

skeleton

Formal

problem

specification

Model

solutions

Model

solution and

error model

Student data

Handling of syntax

variation

a a a a a

Handling of algorithm

variation

a ñ a ñ a

How to assess

program correctness

Output Constraints Model

solution

Model

solution

Student

solutions

TABLE 7 FEATURES OF PROGRAMMING TUTORS

Strategy-based feedback for imperative programming exercises 21

JITS. Around 2003 a prototype of the Java Intelligent Tutoring System (JITS) was designed for

students in their first programming course at college or university level (Sykes & Franek, 2003). The

tutor focuses on a subset of the Java programming language (variables, operators and looping

structures) and incorporates findings from artificial intelligence and cognitive science. Students can

practise with programming exercises and ask for hints. The prototype version of JITS provides two

types of functionality:

¶ A-type functionality. When a programming exercise has a straightforward solution, the system

calculates a transformation string from the studentôs submission to the solution provided by

the lecturer. A transformation string contains symbols that indicate which changes have to be

made to transform the source into the target string. The system tries to implement the

changes from the transformation string in a stepwise fashion through interaction with the

student.

¶ B-type functionality. In this case there are multiple solutions and the lecturer only provides the

problem description and the desired results. An intent recognition scanner-parser algorithm is

used to determine the intention of the student. The studentôs code is analysed step-by-step

and applies transformation sequences to produce tokens the parser can recognise, using a

symbol table and a list of reserved words and keywords.

FIGURE 7 THE TUTORING PROCESS IN THE JITS PROTOTYPE

JITS continued to be developed and tested resulting into an updated version (Sykes, 2005). In this

version instructors can no longer upload solutions, only the expected output. The system uses the

Java Error Correction Algorithm (JECA) that evolved from the algorithm used for b-type functionality.

Besides trying to autocorrect the studentôs solution it generates a number of permuted parse trees in

order to find out what the student was trying to do.

The further development of JITS also involved constructing an engaging, complete and accessible

learning environment. An authoring tool for lecturers was added to submit new exercises by specifying

the problem statement and description, required output and a code template. Considerable attention

was also given to hint generation. A hint-object in JECA consists of information on the location of the

problem, a proposed solution, the confidence of this solution and the type of hint (keyword

replacement, grammatical hint, logic error et cetera). The data in the hint-object is used to generate a

hint message for the student.

JITS was tested in multiple qualitative studies with positive results from students and professors. JITS

is easy to use for both students and instructors. However, hints are more directed at the syntax level

and do not help the student in approaching a problem. Because the system only knows the required

output, hints cannot be given on the strategy level.

Strategy-based feedback for imperative programming exercises 22

FIGURE 8 A FRAGMENT OF THE USER INTERFACE OF JITS

J-Latte. J-LATTE, the Java Language Acquisition Tile Tutoring Environment, is a Java tutor from

2009 (Holland, Mitrovic, & Martin, 2009). The tutor presents the student with simple programming

exercises that can be solved with a subset of the Java programming language. The problem can be

solved in two modes that can both be seen in Figure 9:

¶ Concept mode. Concepts are programming artefacts defined at a higher level, such as

declaration, return statement and for loop. The student can select predefined concepts from

the user interface and combine them to create the structure of the solution.

¶ Coding mode. When a student selects a concept, the accompanying code can be entered.

Strategy-based feedback for imperative programming exercises 23

FIGURE 9 THE INTERFACE OF J-LATTE

J-LATTE uses constraints to represent domain knowledge. These constraints describe features of the

solution that can either be syntactic, semantic or style-related. Semantic constraints compare a

proposed solution to the formal specification of the problem, for example:

(sum- of - function - over - a- range :range (:from (method - arg :name "startNum") :to
(method - arg :name "endNum")) :function square)

This specification states that the ósum-of-function-over-a-rangeô pattern should be used, which could

be any kind of loop, it specifies the lower and upper limit of the range and requires the presence of a

square-function.

Feedback can be requested by the student at any time during the exercise. The system indicates

whether the provided solution is correct or incorrect and also presents error messages related to the

first or all constraints that are violated, with some hints on how to solve the errors. Using constraints

does not force the student to follow a predetermined path in programming.

An experiment with students using the tutor showed promising results, although the number of

participants was too low to draw any valid conclusions. J-LATTE supports the tackling of a problem in

chunks by choosing building blocks and refining them step-by-step, but the feedback is not focused on

following a particular solution strategy.

Prolog Tutor. The Prolog Tutor is a tutor that guides programming and performs error analysis for

writing programs in the declarative, logic programming language Prolog (Hong, 2004). The underlying

technique categorises Prolog programs that have the same programming technique or code pattern.

These categorisations can be used for recognising and generating code. For each class of programs a

set of grammar rules is determined (see Figure 10) and knowledge about the technique and coding is

stored in frames.

Strategy-based feedback for imperative programming exercises 24

FIGURE 10 SOME PROLOG PROGRAMMING TECHNIQUE GRAMMAR RULES

Prolog programs can be parsed using these grammar rules. There can even be a hierarchy of

programming techniques so the tutor can operate on different levels of abstraction. The instructor has

to provide all possible solutions to an exercise. Differences in the order of clauses or predicates can

be ignored by the system by applying certain rules.

A student working with exercises in the tutor can get help in two ways:

¶ Guided programming. The right programming technique is offered by providing a template the

student can fill in. First, the template at the highest level of abstraction is offered. If the student

asks for more help, a more detailed or specialised template can be given, as shown in Figure

11. The students might be asked to choose a specific technique if there are multiple

approaches.

¶ Error analysis. If the system recognises that a student is using the correct programming

technique, the tutor can detect if this technique is used in the right or wrong way and provides

a detailed error message. Errors are treated one by one until the student solves them all. This

is done by comparing the parsed student program to the parsed solution.

FIGURE 11 THE RESPONSE OF THE PROLOG TUTOR TO A STUDENT ASKING FOR HELP

The tutor was tested with over a hundred solutions to one programming problem. Overall the tutor

performed well, 98% of the correct programs and 95% of the incorrect programs were correctly

diagnosed. The recognition of multiple solution strategies and the top-down approach of solving a

problem are similar to the strategies for solving a problem in the Ask-Elle tutor.

Python tutor. The work of Singh et al. focuses on generating feedback for solutions to introductory

programming problems in a large subset of Python (Singh, Gulwani, & Solar-Lezama, 2013).

Feedback is provided after a complete solution is submitted and consists of the location of the error,

the problematic expression and the modification, as shown in Figure 12.

Strategy-based feedback for imperative programming exercises 25

FIGURE 12 GENERATED FEEDBACK FOR AN ERRONEOUS SOLUTION

As input to the system, the instructor has to write a reference implementation and an error model using

an error model language the authors designed. The error model consists of a set of correction rules

that solve the mistake a student might make together with appropriate feedback messages in natural

language. All possible programs based on these rules applied to the solution of the student are then

searched to find the one that most closely matches the reference solution. This is done by translating

the program with the correction rules into a Sketch program. Sketch is a software synthesis tool that

can complete a partial code implementation so it behaves like a given specification. The Sketch

synthesiser finds the solution and feedback is generated based on the applied correction rules.

The tool was tested on thousands of student solutions and was able to provide useful feedback on at

least 64% of the incorrect solutions. Ten seconds on average were needed to calculate the feedback.

A limitation of the tool is its inability to deal with student programs that have large conceptual errors.

The tool also cannot deal with structural requirements such as enforcing students to use recursion in

their solution.

Data-driven tutors. A different approach is the generation of feedback based on student data from

the past. Jin et al. (Jin, Barnes, & Stamper, 2012) use linkage graphs to represent correct student

solutions. A linkage graph is an acyclic graph consisting of nodes representing states and directed

edges representing the order of the statements. The student can ask for a hint while doing an

exercise. A linkage graph is then created and the closest match with an existing graph will be used to

provide feedback on the next step or the correction of an erroneous step. Multiple existing student

solutions should be available with the risk that a specific alternative to solve the exercise might not be

recognised. There is also work to be done on the format of the feedback messages.

Rivers and Koedinger propose a method for generating feedback by a data-driven approach focusing

on class 3 problems, applying it to Python programming (Rivers & Koedinger, 2013). It is based on the

conception that a large collection of student programs should give valuable information on possible

solutions and common errors. Graphs are used to represent all possible paths to a solution, which the

authors call solution spaces, in which the edges are steps and the nodes solutions states. Equivalent

solution states are recognised by transforming programs into a canonical form. The canonical form is

achieved by first creating an abstract syntax tree from a program, renaming all variables and

Strategy-based feedback for imperative programming exercises 26

attempting all known normalizing transformations. The best next step is calculated from this graph, by

considering possible correct solutions strategies that are close to the current solution state the student

is in and by considering frequently visited states by other students. Feedback is then calculated based

on the differences between the current and the next state.

An advantage of a data-driven approach is that the instructor does not have to provide much input. A

disadvantage is that there might be unusual solution strategies in the data set that a teacher would

normally not encourage.

Other tutors. Another tutoring system was created at the University of Split (Dadic, Stankov, &

Rosic, 2008). A component of this system teaches program design skills. The instructor provides a

model solution that will be stored in a tree structure consisting of goals and plans. If the student

program does not match the model solution, the system will give an error message and will provide

help on how to proceed on multiple levels. The analysis of students programs is based on artificial

intelligence techniques, although the exact details of the implementation are unclear.

The programming tutor developed by Weragama et al. focuses on the teaching of web programming in

PHP (Weragama & Reye, 2013). The tutor is still being improved. The solution to an exercise is

defined using a set of predicates describing a goal, a number of constraints and conditions. If all

predicates can be recognised in the student program, it is considered correct, if not, feedback is

provided. The tutor is not focused on providing feedback during programming.

In a tutor for Prolog programming (N. Le & Menzel, 2008) constraints are used to describe the solution

space of programming problems, considering ill-defined programming exercises. Constraints can

either refer to a specific problem or can be general Prolog constraints. Feedback is generated based

on constraints that are not met by the student solution.

Jurado et al. (Jurado, Redondo, & Ortega, 2012) have developed a system that gives feedback based

on software metrics and test cases. The structure of the solution is checked by the fuzzy evaluation of

a number of metrics, such as lines of code and cyclomatic complexity. The correctness of the solution

is checked by running several test cases. The provided feedback is then based on the test case or

metric that deviates from the results of the model solution.

M-PLAT, Multi-Programming Language Adaptive Tutor (Nunez, Fernandez, & Carretero, 2010),

focuses on providing exercises that are suitable for the student, solution checking, documentation and

collecting statistics on student performance in one environment. Solution checking is done by the

expert module that uses black box testing and white box testing. The system provides output in the

form of error messages.

Commercial and online tutors. Beyond the scientific world quite a number of online programming

tutors have emerged recently, such as Code School
7

, Codeacademy
8

 and Khan Academy
9

.

Commercial parties also provide tutors, such as My Programming Lab
10

 from educational publishing

company Pearson. We do not know the technology behind these solutions and are only able to look at

what they offer. Many free online tutors focus on absolute beginners and have a restricted set of

exercises. Hints are often more general (Figure 13) or a template of the wanted solution that should be

7
 https://www.codeschool.com

8
 http://www.codecademy.com

9
 https://www.khanacademy.org

10
 http://www.pearsonmylabandmastering.com/northamerica/myprogramminglab

All retrieved April 25, 2014

https://www.codeschool.com/
http://www.codecademy.com/
https://www.khanacademy.org/
http://www.pearsonmylabandmastering.com/northamerica/myprogramminglab

Strategy-based feedback for imperative programming exercises 27

filled in (Figure 14). Hints from My Programming Lab (Figure 15) can be very cryptic when only

submitting a small part of a solution.

FIGURE 13 CODEACADEMY HINT

FIGURE 14 KHAN ACADEMY HINT

FIGURE 15 MY PROGRAMMING LAB FEEDBACK

3.4 PROGRAM ASSESSMENT TOOLS

An essential and both challenging aspect of programming tutors is the automatic assessment of

student programs. A tutor should be able to determine if a candidate solution is either correct or

incorrect accompanied by a list of semantic errors in the latter case. Semantic variations of a solution

should be recognised and marked as correct.

In a fairly recent review of automatic assessment tools for programming developed from 2006 to 2010

(Ihantola, Ahoniemi, Karavirta, & Seppälä, 2010) two categories are identified. The first category is the

use of industrial testing tools and the second óvarious specialised solutionsô, subdivided into the

traditional and widely used comparing of output, scripting and experimental approaches. The authors

state that a very large number of tools are available, often with similar features and they plead for

combining effort and disclosing implementation details.

The assessment tools that are based on test execution only are unable to consider the actual solution

strategy making it impossible to locate and diagnose errors. Another approach is to assess programs

Strategy-based feedback for imperative programming exercises 28

using a number of metrics, such as lines of code and counting certain expressions or constructs,

which has similar limitations. This paragraph focuses on a number of relevant automatic assessment

approaches that have their focus on program semantics instead of testing and metrics.

More advanced assessment tools can be divided into three categories. The assessment method used

by Gerdes et al. (Gerdes, Jeuring, et al., 2010) is an example of the source-to-source approach.

Programs are assessed based on their equivalence with a solution from a set of generated solutions

based on the strategy derived from model solutions. Syntactic differences are eliminated by program

transformations. Other variants are source-to-specification and specification-to-specification in which a

specification is a high-level description of goals in a program. These variations are not widely applied

due to a number of difficulties.

Another example of source-to-source is the work on the assessment tool SIPLeS-II for Smalltalk

programs (Xu & Chee, 2003). The tool uses a transformation-based approach to detect semantic

errors in student programs and recognise many semantic variations. The student program is matched

with a model program after they are normalised using various program transformations. Thirteen

different semantics-preserving variations are identified, such as syntax variation, control structure

variations and statement orders. All of these variations are taken into account and represented by

transformation rules. The student program is first represented as an Abstract Syntax Tree and later as

an Augmented Object-oriented Program Dependence Graph (AOPDG). An AOPDG is a flow graph

that represents the operational semantics of a program. The tool can also be used for other

programming languages and paradigms and has proven to be successful in an experiment with

assessing student programs.

A similar approach is applied by Wang et al. (Wang, Su, Wang, & Ma, 2007), who developed an

automatic grading system for programming exercises in C, called semantic similarity-based grading.

The input to the grading system is a set of model solutions that represent various algorithms. A

student program is correct if it is equivalent to one of these model solutions, meaning that they should

have the same representation in the form of a system dependence graph. Before comparing them, the

student graph and model graph are standardised using a number of semantics-preserving

transformations to eliminate syntactic differences. If a match is found, values for matching size,

structure and statements are calculated and combined into a semantic similarity value between 0 and

1. This number is used to indicate the differences, a full score of 1 means equivalence and therefore a

correct solution, and can be converted into a grade.

The same conception of normalizing a program by various transformations and creating graphs

representing the structure of the code is used by Naudé et al. (Naudé, Greyling, & Vogts, 2010) and Li

et al. (Li et al., 2010). The assessment method from Naudé et al. is different because it compares the

student graph to previously marked submissions of different quality from either other students or an

instructor.

Multiple methods can be combined to improve assessment quality. Vujoġeviĺ-Janiļiĺ et al. (Vujoġeviĺ-

Janiļiĺ, Nikoliĺ, Toġiĺ, & Kuncak, 2013) use automated bug detection, testing and control flow graph

similarity to a model solution to assess programming exercises. A low-level intermediate

representation of the program is used so the assessment methods can be applied to programs written

in various languages.

Strategy-based feedback for imperative programming exercises 29

3.5 CONCLUSION

Several observations can be deduced from the preceding research:

¶ The research area of intelligent tutors for programming was quite popular in its early days.

Partly because of its complexity, this popularity faded. Recently there seems to be a modest

revival by the emergence of a number of new (web-based) tutors.

¶ Many tutors can only provide feedback on complete student solutions and thus are not able to

guide the student on their way to the right solution. Tutors that are able to provide feedback on

incomplete solutions are often restricted to one solution strategy (class 2 problems).

¶ Not many tutors are widely available. Tutors that are still in development are usually only

available within a university.

¶ A large number of program assessment tools mostly use testing techniques. Recent tools

increasingly take a different approach by considering the semantics of a program.

How do the Ideas framework and the Ask-Elle tutor fit in this landscape of different tools and

approaches? The combination of dealing with incomplete solutions to ill-defined (class 3) programming

problems is rarely shown. The use of model solutions, the normalisation of programs and the matching

of solution and student program are also used in other programming tutors and assessment tools. The

ability to annotate model solutions with additional instructions is not seen elsewhere.

Strategy-based feedback for imperative programming exercises 30

4 RESEARCH DESIGN

This research has been designed based on the problem description from Chapter 1 and the results of

the literature study on existing programming tutors and the Ideas framework. We have concluded that

adaptable tutors that deal with incomplete solutions for ill-defined problems can hardly be found for the

imperative programming paradigm. In this chapter we state the research questions, the requirements

and scope and list the validation questions.

4.1 RESEARCH QUESTIONS

In this thesis we elaborate on the answer to the following question:

How can we generate adaptable feedback to guide a student step by step towards a solution for an

introductory imperative programming problem that can be solved by multiple strategies?

To find an answer to this question, a prototype for a domain reasoner for imperative programming has

been implemented using the Ideas framework, consisting of the following components:

¶ An abstract syntax, a parser and a pretty printer for imperative programs.

¶ A set of rules.

¶ A generator for generating strategies by combining rules.

¶ A recogniser for equivalent and similar programs.

¶ Services for diagnosing programs and feedback generation.

A web based front-end for doing exercises has been created to provide an interface to the services of

the domain reasoner.

By designing and developing the prototype we are able to formulate an answer to the following set of

sub-questions:

i. What are the differences and similarities between the domain of imperative programming and

the domains that have already been implemented using the Ideas framework?

ii. How do we construct a strategy for solving an imperative programming exercise?

iii. How do we represent incomplete imperative code?

iv. How do we distinguish different solutions to an imperative programming problem and when

are solutions similar?

v. How can we recognise a strategy in (incomplete) imperative code?

vi. How can we generate semantic feedback for (incomplete) imperative programs?

vii. How can feedback be adapted by an instructor?

4.2 REQUIREMENTS AND SCOPE

Functional requirements. The tutor has the following functional requirements, described as user

stories:

¶ As an instructor, I want to add a set of model solutions to a programming problem.

¶ As an instructor, I want to provide further instructions so I can adapt the feedback for a

particular exercise.

¶ As a student, I want to ask for feedback so that I will know if I am on the right track.

¶ As a student, I want to ask for a hint so that I will know how to proceed.

The feedback and hints that are generated are at the strategy level. Besides semantic errors, students

make many syntactical mistakes. These mistakes can often be identified by a compiler and are not

Strategy-based feedback for imperative programming exercises 31

included in the prototype. Generation of feedback can be provided on several levels. For absolute

beginners it may be necessary to guide the student step-by-step through the construction of a while

loop. For more advanced students, it may be enough to only indicate that a looping structure must be

introduced. Since we do not build up a student model, we do not know at which level a student is

when he or she is working on a programming problem. This issue can be left to the instructor who is

able to annotate a model solution with directions on the level of feedback that should be generated.

Another future option is that students indicate their level themselves. If the tutor is incorporated in a full

learning environment in which student models are created, these models can be used to determine the

skill level of the student.

Programming language. The prototype supports a well-known existing programming language.

With this choice a large audience can be reached and in the long term we can combine our tool with

existing programming tools to enrich the learning experience. In 2011 the results of a survey on

practices in introduction courses on programming for undergraduates in the United States were

published (Davies, Polack-Wahl, & Anewalt, 2011). Java as the main programming language

appeared to be by far the most popular choice. The same result emerged from a similar study

conducted in Australia in late 2010 (Mason, Cooper, & Raadt, 2012). Because of the popularity of

Java both as a language taught in schools and universities and in the rankings shown in Chapter 1,

Java is the language of choice. In addition to this, Java is taught in the first year of the IT-studies at

Windesheim University of Applied Sciences where we are able to collect student data for validation.

Support for PHP programs is also added because this language is used as a first programming

language at Windesheim and is an additional source for data collection. Adding support for PHP also

provides us with an opportunity to investigate the issues with developing a tutor that supports multiple

imperative languages.

An imperative programming language such as Java has many language constructs and features. The

full language is not supported in the prototype. We have selected a subset of the language including

the constructs that are well-known and frequently used by novice programmers.

Exercise type. We focus on exercises for novice students who are learning to program. Exercises

should be small; we only consider code fragments and methods that solve a single problem. We do

not require fully executable code containing a main-function or a class definition. However, the

exercises could be solved using multiple strategies or algorithms, corresponding to class 3 problems in

the classification by Le et al. of educational problems based on their degree of ill-definedness (N.-T.

Le et al., 2013).

Limitations. Besides implementing a reduced set of programming constructs, we also allow limited

variety in expressions. We do want to be able to recognise variants of an expression, but the number

is restricted. Compile errors are not taken into account. We assume that all programs that will be

analysed do not contain any errors a compiler could identify.

4.3 VALIDATION

The main questions for the validation of the results are:

a. Are student programs that do or do not follow a known strategy recognised as such?

b. Can a step (or multiple steps) in a student program be recognised as either following a known

strategy or not?

c. Do the generated hints lead the student to a solution?

d. Does the generated feedback reflect the annotations in model solutions?

The answers to these questions have been found by setting up various test cases, tutoring scenarios

and analysing student data. Data was collected from actual students doing programming exercises.

Strategy-based feedback for imperative programming exercises 32

5 A DOMAIN REASONER FOR IMPERATIVE PROGRAMMING

We have created a prototype of an imperative programming tutor, consisting of a domain reasoner for

imperative programming and a user interface. The domain reasoner retrieves programming exercises

from local files. We can work with the tutor using a basic command line interface. In addition to this, a

web interface has been created that offers a simple learning environment in which students can solve

exercises using the various feedback services. The feedback services are offered as web services

with which we can interact through JSON or XML messages. Figure 16 shows a screenshot of this

web front-end that has been created using HTML, JavaScript/JQuery and Ajax-calls with JSON

messages to the services of the domain reasoner.

FIGURE 16 WEB FRONT-END

The domain reasoner has been built using the Ideas framework, providing support for defining

exercises, creating strategies and calculating feedback. In this chapter we elaborate on the

components necessary to implement the domain reasoner for the domain of imperative programming

and provide an answer to the various research question stated in the previous section. Knowledge of

functional programming is required to fully understand the code fragments. This chapter is structured

as follows:

¶ In Section 5.1 we discuss the internal representation of imperative programs. We have

designed an abstract syntax and implemented a parser that translates program code in an

imperative language into this abstract syntax. We also provide a pretty printer to show parsed

programs in their original syntax. Because we allow programs to be incomplete, we describe

how these programs can be represented, answering research question iii.

Strategy-based feedback for imperative programming exercises 33

¶ In Section 5.2 the generation of a programming strategy from model solutions is explained,

answering research question ii. To create a strategy we have defined a set of rules to

represent steps in solving an imperative programming exercise. In our strategy generator we

combine these rules into a strategy representing the various possible solutions and the paths

to arrive at a solution.

¶ The issues concerning the recognition of student solutions can be found in Section 5.3.

Variation in imperative programming code is a major issue. We need to recognise equivalent

and similar programs using evaluation and normalisation of programs. This section focuses on

research question iv.

¶ Finally the generation of feedback is examined in Section 5.4. We examine which services

from the framework we can use to diagnose student programs and provide hints, and where

we have to make adjustments. We also look into various ways an instructor can adapt

feedback using specific settings or annotations. Research questions v to vii are addressed.

Research question i is addressed throughout the entire chapter.

5.1 REPRESENTATION OF IMPERATIVE PROGRAMS

The prototype can be used for languages that support the imperative programming paradigm. The

various language constructs that are currently supported are shown in Table 8. The prototype does not

support more advanced constructs such as methods declarations, object orientation, exception

handling and object types. Less frequently used statements (switch, do while), data types such as

chars and floats and various other operators have not been included in the prototype either.

LANGUAGE CONSTRUCT

Variable declarations (integer, boolean, string, array)

Variable initialisation

Integer, boolean, string and array literals, null value

Arithmetic operators: +, - (binary and unary), /, *, %

Comparison operators: >, <, <=, >=, !=, ==

Assignment operator: =, +=, -=, /=, *=, %=

Logic operators: &&, ||, !

Postfix/prefix operators: ++, --

String concatenation

Print statement

If statement, if-else statement

Loop statements: for, while

Calling library methods

Array access

Branching: break, continue

TABLE 8 SUPPORTED LANGUAGE CONSTRUCTS

Abstract syntax. An abstract syntax has been designed to represent imperative programs,

supporting the language constructs of Table 8. This abstract syntax is implemented using data types in

Strategy-based feedback for imperative programming exercises 34

Haskell, in which a Program is the top-level type that consists of zero or more statements. The

Statement data type represents the various program statements:

data Statement =
 Block [Statement]
 | If Expression Statement
 | IfElse Expression Statement Statement
 | While Expression Statement
 | For ForInit [Expression] [Expression] Statement
 | Print Expression
 | VarDeclarations DataType [Expression]
 | Expr Stat Expression
 | Empty
 | Break
 | Continue

Many statements are composed of one or more expressions, represented by the Expression data

type:

data Expression =
 Infixed InfixOp Expression Expression
 | Assign ment AssignOp Expression Expression
 | Prefixed UnaryOp Expression
 | Postfixed UnaryOp Expression
 | Literal Expr Literal
 | Id Expr Identifier
 | Call Identifier [Expression]
 | Property Identifier Identifier
 | NewArray DataType Expression
 | ArrayAcc Identifier Expression

The details of the other data types that are used, such as Identifier , DataType and Literal , are

omitted. The abstract syntax is intentionally not very strict and specific, so various different languages

can be represented by this data structure. An advantage of this general internal structure is that we

can create programming exercises with solutions in one specific language that can also be solved

using a different programming language.

Parser. Program code from a specific imperative language should be transformed into this internal

representation using a parser. Language constructs that are very specific for a certain language are

converted into a more general structure in the parsing process. For instance, some languages only

allow one condition in a for statement, whereas other languages allow multiple conditions separated

by a comma. The presence of a compiler or interpreter is always assumed so the parser does not

have to perform semantic checks, such as type checking and object binding. If a program cannot be

parsed, the tutor is not able to deal with it and the student should repair the code first based on

compiler messages.

Currently there are parsers for two different programming languages: Java and PHP. Java is a well-

known and widely used object oriented programming language that is often taught in schools and

universities. PHP is a server-side scripting language that is usually embedded into HTML. The parsers

have been implemented using the Parsec library
11

 that provides a large number of parser combinators

11
 http://hackage.haskell.org/package/parsec, retrieved November 13, 2013

http://hackage.haskell.org/package/parsec

Strategy-based feedback for imperative programming exercises 35

to simplify the parsing process. The parsers are written in the applicative style. A lexer is automatically

created using a language definition for Java or PHP defining their keywords and special characters.

Using this lexer we can easily define parsers for the language constructs, such as the while statement

in the following example. The functions exprP and statP are the parsers for an expression and a

statement respectively:

whileP :: Parser Statement
whileP = While <$ reserved "while" <*> parens exprP <*> statP

Pretty printer. In the output of the tutor we want to show programs in their original syntax. To enable

this, a pretty printer has been implemented that converts abstract syntax into a textual representation

that corresponds to the syntax of the programming language that is used. The printer is implemented

using the PPrint library
12

 that is based on the pretty printing combinators described by Philip Wadler

(Wadler, 1998). The pretty printer is implemented for both the Java and PHP language. The next

example shows the while statement converted into the Doc data type that represents a pretty

document that can be shown as text.

instance Pretty Statement where
 pretty (While e s) = text "wh ile" <+> parens (pretty e) <$> nested s

Support for incomplete programs. Students who have not finished their program yet should be

able to receive feedback on their partial solution. Statements can be omitted in imperative

programming, which should not create problems with parsing the program. To further support students

in creating a program step by step the question mark (ó?ô) character can be used inside a statement to

represent an expression that is yet to be completed. A few examples are:

int x = ?;
sum = ? + ?;
for (?; ?; ?) ;
while (x < ?);

The expression data type has been extended with a óholeô constructor. An integer is used to uniquely

identify a specific hole.

data Expression = ƛ | Hole Expr LocationID

The addition of a new symbol in the programing language will of course cause problems because the

compiler is unfamiliar with this symbol. This implies that students cannot rely on compiler messages

when using holes in their programs. Instead they are referred to the tutor that is able to recognise the

holes and help the student complete the statement before continuing with the remaining program.

Testing. The parsers have been tested by parsing a large number of source files that include the

supported language constructs in various forms. We also use QuickCheck (Claessen & Hughes,

2000), a library for testing that automatically generates test cases attempting to falsify properties. The

combination of a parser and pretty printer together should satisfy the following (simplified) QuickCheck

property, stating that the pretty printed representation of a program should be parsed into a program

that is equal to the original:

12
 http://hackage.haskell.org/package/wl-pprint-1.1, retrieved November 13, 2013

http://hackage.haskell.org/package/wl-pprint-1.1

Strategy-based feedback for imperative programming exercises 36

prop_parsePrettyPrintedProgram :: Program - > Bool
prop_parsePrettyPrintedProgram program = program == (parse . pretty) program

To generate random programs we provide instances of the Arbitrary class for statements,

expressions and the other data types that are used. We also provide a separate generator for

programs that do not contain any holes, such as model solutions. An example fragment that generates

a statement by choosing one from a list of statements is shown next. These statements consist in their

turn of other arbitrary components. To prevent the generation of structures that are nested too deeply,

we use a ósizedô generator that recurses towards statements that do not include other statements. If

the size integer n reaches zero, these nested statements are not included in the choice.

instance Arbitrary Statement where
 arbitrary = sized $ sizedStatGen True

sizedStatGen :: Bool - > Int - > Gen Statement
sizedStatGen holes n = oneof $ notNested ++ if n > 0 then nested else []
 where
 notNested =
 [
 Print <$> arbEx,
 VarDeclarations IntType <$ > sizedVector assignExprGen (1, 3),
 return Break,
 ƛ
]
 nested =
 [
 If <$> arbEx <*> smallerStat,
 IfElse <$> arbEx <*> sizedBlock <*> smallerStat ,
 ƛ
]
 smallerStat = oneof [sizedStat, sizedBlock]
 counter = makeIdt "i"
 arbEx = exprGen holes
 sizedStat = sizedStatGen holes $ n `div` 10
 sizedVector = (>=>) choose . flip vectorOf
 sizedBlock = makeBlock <$> sizedVector sizedStat (1, 5)

To generate programs that do not deviate too much from real world programs, we have to further

control the randomness. In the next example we show how a for statement is generated. To avoid the

accidental creation of infinite loops, a counter variable is used that is initialised at a number between

zero and ten, increments with one each iteration and ends at 99.

For
 <$> ForInitExpr . (:[]) . Assignment Assi gn counter . makeInt <$> choose (0,10)
 <*> pure [Infixed Less counter $ makeInt 99]
 <*> pur e [Postfixed Incr counter]
 <*> smallerBlock

We control the generation of expressions by providing a distribution and using custom-made

generators such as assignExprGen (for variable assignments) and arithExprGen (for basic

arithmetic expressions) that generate common expressions. The frequency function randomly

chooses one of the generators based on the distribution.

Strategy-based feedback for imperative programming exercises 37

exprGen :: Bool - > Gen Expression
exprGen holes = frequency $
 [(40, makeInt <$> choose (0, 999)),
 (40, IdExpr <$> arbitrary),
 (3 0, arithExprGen),
 (20, assignExprGen),
 (5, Call <$> arbitrary <*> vectorOf 2 (exprGen holes)) ,
 (5, ArrayAcc <$> arbitrary <*> exprGen holes)
] ++ [(10, HoleExpr <$> arbitrary) | holes]

An example of a randomly generated program is shown below. Note that there are some language

constructs that will not be accepted by a Java compiler. We do not check for correct declaration and

initialisation of variables. There are many possible improvements; however, for testing purposes these

programs are adequate.

continue;
int z = y != z;
while (true)
 continue;
for (i = 8; i < 99; i++)
 print (211);
for (i = 2; i < 99; i++)
{

 if (658)
 {
 continue;
 }
 if (161)
 y(599, 921 < 225);
 break;
}
print (x);

5.2 STRATEGIES FOR IMPERATIVE PROGRAMMING

To use the Ideas framework for calculating feedback, we need to specify a strategy for each exercise.

In an educational setting, the instructor serves as a guide to show students how to program. When an

instructor is not present, we would like to stay close to what an instructor would have said when a

student asks for help. Therefore model solutions from an instructor are used as a basis to provide

feedback. This approach is also used in a number of other recent programming tutors (Dadic et al.,

2008; Gerdes, Jeuring, et al., 2012; Hong, 2004; Singh et al., 2013) and provides a number of

advantages:

¶ An instructor can easily add new exercises.

¶ Models programs can be annotated, providing extra opportunities for didactic guidance.

Annotating model solutions is elaborated in Section 5.4.3.

Potential difficulties that should be looked into are the large solution space, which is discussed in the

following sections, and the lack of clarity on what exactly distinguishes one solution from the other. It is

the instructorôs responsibility to provide model solutions that represent the solution space of an

exercise. Every model solution should preferably represent a different algorithm that solves the

problem. But what separates one algorithm from the other? This issue is addressed in Section 5.3.1.

Strategy-based feedback for imperative programming exercises 38

The strategy to work towards a particular model solution should reflect how imperative programs are

implemented. Imperative programs can be constructed in several ways:

¶ Quickly constructing a coarse solution and then refactoring it until there are no errors left. This

approach might reflect the trial and error style students often adopt.

¶ Programming by contract: defining pre- and post-conditions prior to the actual implementation

(Dijkstra, 1975).

¶ The stepwise decomposition of a program using refinement steps (Wirth, 1971).

¶ Building up a program line by line, manipulating the program state in the meantime.

In recent tutors that support incomplete programs, we recognise the third option for an imperative

language (Holland et al., 2009) and logic programming (Hong, 2004). In the Ask-Elle tutor for

functional programming (Gerdes, Jeuring, et al., 2012) refinement steps are used to gradually make a

program more complete by replacing unknown parts (holes) by actual code. The last option is used in

two data-driven tutors for imperative programming (Jin et al., 2012; Rivers & Koedinger, 2013),

although the steps are generally larger than just one line.

An advantage of the last option is that the compiler can provide help in most situations, for example

variables are always declared before they are used. We have selected this style for the tutor, because

of this advantage together with the ability to help the student from start to finish and not only after

creating a first solution entirely on their own. We also incorporate refinement for composed language

constructs.

To create a strategy using the Ideas framework we need two components that are elaborated in the

next sections:

¶ Rules that represent the steps a student can take to gradually build up a solution.

¶ A strategy generator that generates a strategy from model solutions using these rules.

5.2.1 RULES
A strategy to solve an exercise is made up of a number of steps, or órulesô. The Ideas framework

enables the creation of rules based on a transformation function. Two types of rules are used in the

tutor for imperative programming: append rules and refinement rules, which will be explained in more

detail in this section.

Append rules. An append rule appends a statement to the end of a block, which corresponds to

updating the program state line by line. An example of three consecutive applications of an append

rule is:

x = 5; Ĕ x = 5;
y = 7;

Ĕ x = 5;
y = 7;
avg = (x+y)/2;

Ĕ x = 5;
y = 7;
avg = (x+y)/2;
print(avg);

Suppose we have a program with multiple nested statements, such as:

i f (x > 10) {
 f or (i = 0; i < x; i++) {
 print(i);
 }
}

Strategy-based feedback for imperative programming exercises 39

It is unclear where a new statement should be appended. There are three options: after the print

statement inside the for statement, after the for statement inside the if statement or after the if

statement. To identify the specific location of an append rule, we extend the construction of a Block

with an integer that uniquely identifies this block. To enable adding statements to the highest level of

the program, every program will be parsed into a program with a block at top level.

data Statement = ƛ ƴ Block Location ID [Statement]

An append rule can be created using the appendStat function as shown below. The pref integer is

used for rule ordering, which is explained at the end of this section. The rule can only be applied if the

block with the specified identifier is present in the program exactly once. We use the transformBi

function from the Uniplate library (Mitchell & Runciman, 2007) for generic traversals. The library

provides functions to easily traverse and manipulate complex data structures to avoid writing a lot of

repetitive, óboilerplateô, code. The Biplate variant (transformBi) is used because the Program data

type combines multiple other data types. The transformation append' is applied to all statements in a

program, including nested statements that can be found inside statements such as while and if. If the

unique identifier of a block equals the location parameter, the new statement is appended to the block.

appendStat :: Statement - > LocationID - > Int - > Rule Program
appendStat newStat loc pref = makeRule ruleId $ append
 where
 append p
 | nrOfBlocksById loc p == 1 = Just $ transformBi append' p
 | otherwise = Nothing

 append' (Block i stats) = Block i $ stats ++ [newStat | i == loc]
 append' stat = stat

 ÒÕÌÅ)Ä ˮ ƛ

Refinement rules. A refinement rule replaces a hole by an expression. An example of applying a

sequence of refinement rules is:

avg = ?; Ĕ avg = ? / ?; Ĕ avg = sum / ?; Ĕ avg = sum / 2;

The code for creating a refinement rule is similar to the code for the append rule, apart from the

implementation of the transformation function refine ' that replaces the hole with the new expression:

refineExpr :: Expression - > LocationID - > Int - > Rule Program
refineExpr newExpr loc pref = describe name . makeRule ruleId $ refine
 where
 refine p
 | nrOfHolesById loc p == 1 = Just $ transformBi refine' p
 | otherwise = Nothing

 refine' e@(HoleExpr i)
 | i == loc = newExpr
 | otherwise = e
 refine' e = e

 ÒÕÌÅ)Ä ˮ ƛ
 ÎÁÍÅ ˮ ƛ

Strategy-based feedback for imperative programming exercises 40

Other rules. We have defined a rule for inserting a statement at any location in a program; however

this rule has not yet been used. Defining rewrite rules is also an option for future research, as

described in Section 7.4.

Rule ordering. Rule ordering is used to give preference to certain model solutions and language

constructs. We define a rule ordering based on an integer that is the suffix of the rule identifier, for

example rule óif-else-at-1.6ô will be ordered using the suffix ó6ô. We define preference during the

strategy generation process, which is described in the next section.

5.2.2 GENERATING STRATEGIES
Using the rules described in the previous section, we can now specify strategies for the stepwise

development of a program. We have created a strategy generator that accepts a set of model

programs as input and produces a strategy as output. A number of normalisations are performed on

the program before the strategy generation. During the generation process we maintain a state that

stores a counter and the feedback level (the usage of this level is elaborated in Section 5.4.3). The

counter is used to uniquely number the blocks and holes during the generation of the strategy.

type GenState a = State (LocationID , Int) a

We define a GenStrategy class with a function that takes any value (and some additional parameters)

and returns the current state and a corresponding strategy for a program. We provide implementations

for the main data types Program, Statement and Expression .

type Strategy Generator a = LocationID - > Int - > a - > GenState (Strategy Program)

class GenStrategy a where
 genStrat :: Strategy Generator a

We also define a class of types for which we can generate a strategy together with a specific location,

which could either be a hole (for expressions) or a block (for statements).

class GenStrategy a => GenStrategy WithLoc a where
 genStrat WithLoc :: Int - > a - > GenState (a, Strategy Program)
 genStrats With Locs : : Int - > [a] - > GenState ([a], [Strategy Program])
 genStrats WithLocs = mapAndUnzipM . genStrat WithLoc

The overloaded function genStrat WithLoc is defined for both statements and expressions and

returns a tuple with either a new hole or a new block with a unique number together with the strategy

of the input. The getNextNr function returns the next available number and updates the counter in the

state. We only show the code for the expression variant.

genStrat WithLoc pref expr =
 do
 loc <- getNextNr
 expr' <- genStrat loc pref expr
 return (HoleExpr loc , expr')

As mentioned before, we generate a strategy for each statement and expression in a program. We

illustrate this by showing the implementation of a number of language constructs, but are far from

complete.

Strategy-based feedback for imperative programming exercises 41

If statement strategy. The next fragment shows the code for generating a strategy from an if

statement.

genStrat loc pref (If condition body) =
 do
 (hole, condition') < - genStrat WithLoc pref condition
 (block, body ') <- genStrat WithLoc pref body
 app < - appRule (If hole block)
 return $ app <*> condition' <*> body'

First, a hole is created for the condition in the if statement together with a corresponding strategy.

Next, a block and the strategy for the body are generated, followed by an append rule for an empty if

using the helper function appRule . The resulting strategy consists of a sequence of creating an empty

if, building up the condition and finally creating the body using the sequence (<*>) combinator from the

Ideas framework, as illustrated in the following example:

if (?) {} Ĕ if (i sOk) {} Ĕ if (isOk) { call(); }

Infix expression strategy. The next fragment shows how a strategy is created for an expression,

such as ó(a + b) < 2ô. The result is the introduction of an infix expression with holes on both sides of the

operator, followed by the interleaving (<%>) of the sub strategies for the left and right operands of the

expression. Refining the left hole first has a higher preference.

genStrat loc pref (Infixed op e1 e2) =
 do
 (hole1, e1') < - genStratW ithLoc (pref + 1) e1
 (hole2, e2') < - genStrat WithLoc pref e2
 return $ ref Rule (Infixed op hole1 hole2) <*> (e1' <%> e2')

This implies that we can arrive at an expression consisting of several sub expressions in multiple

ways:

Ě

avg = sum / ?;

Ĝ

avg = ?; Ĕ avg = ? / ?;

avg = sum / 2;

Ĝ avg = ? / 2; Ě

Loop strategy. A more complex situation arises when we encounter a for statement in a model

solution. A for statement is easily transformed into a while statement, which we want to support in our

tutor. In the corresponding code we create a strategy for the for statement together with an

accompanying while statement and combine their strategies with the choice (<|>) combinator. The

while statement is constructed by moving the initialisation of the for statement to a new statement

preceding the while. The increment expression of the for statement is appended to the end of the body

of the loop. However, we only include the strategy for a while if the for loop has exactly one condition

(length cond == 1) to avoid an empty while condition. The details of the forStrat and whileStrat

functions have been omitted.

Strategy-based feedback for imperative programming exercises 42

genStrat loc pref (For forInit cond incr body) =
 liftM2 (<|>) (forStrat forInit cond incr body) optionalWhile

 where
 optionalWhile
 | length cond /= 1 = return fail S
 | otherwise = do
 -- convert to while
 let newCond = head cond
 newInit = forInitToStat forInit
 newBody = body <> mconcat (map ExprStat incr)
 init' < - genStrat newInit loc
 whil e < - whileStrat newCond newBody
 return $ init' <*> while

The resulting strategy allows both of the following sequences (skipping some intermediate states):

i = 0; Ĕ i = 0;
while(?)
{}

Ĕ i = 0;
while(i < 8)
{}

Ĕ i = 0;
while(i < 8)
{ i++; }

for(?;?;?)
{}

Ĕ for(i= 0;?;?)
{}

Ĕ for(i=0; i <8;?)
{}

Ĕ for(i=0; i <8;i++)
{}

Block strategy. We are faced with a challenge when we want to implement a strategy generator for

a Block , a list of statements. Every program is a list of statements and inside composed statements

such as loops we find nested lists of statements. In imperative programming a program can be

developed line by line, continuously manipulating the program state. The order of some statements

can be changed with no consequences for the output of the program, for example:

Model: 1
2
3
4
5
6

x = 5;
y = 7;
count = 2;
sum = x + y;
avg = sum/count;
print(avg);

Alternative: y = 7;
x = 5;
sum = x + y;
count = 2;
avg = sum/count;
print(avg);

In this example lines 1 and 2 and lines 3 and 4 are switched with no consequences for the resulting

program. The option to change the order of statements depends on a number of properties. For

example, line 5 and 6 can never be switched because the value has to be calculated first before it can

be printed. A relation has been defined to determine whether a statement depends on another

preceding statement. Dependencies often arise when using or changing variables. We have created a

class that locates identifiers that are changed or used in a particular data type and provide instances

for statements and expressions.

class FindIds a where
 usesIds :: a - > [Identifier]
 changesIds :: a - > [Identifier]

Strategy-based feedback for imperative programming exercises 43

To illustrate these functions we provide parts of their implementation. We start with the usesIds

function on array accessors, such as list[i]. Both ólistô and óiô are used in this expression.

usesIds (ArrayAcc i dt expr) = i dt : usesIds e xpr

Next we examine changesIds on a postfix expression such as counter++, where ócounterô will be

identified as changed.

changesIds (Postfixed Incr (IdExpr i) = [i]

Using these instances we can now define the relation:

s2 ` dependsOǹ s1 =
 -- option 1

 (changesIds s1 Æ (changesIds s 2 Ç usesIds s2)) ̧Å
 -- option 2

 || (usesIds s1 Æ changesIds s 2) ̧Å
 -- option 3

 || ([p | Print p < - universe s 2] ̧Å && [p | Print p < - universe s 1] ̧Å)
 -- option 4
 || s1 == Break || s1 == Continue || s2 == Break || s2 == Continue

The first option identifies a dependency if a variable is changed in statement s1 that is used or

changed in the statement s2, for example in:

x = 1;
print(x);

The second option checks if a variable is used in statement s1 that is changed in statement s2, for

example in:

a = x;
x = 9;

Option three checks if both statements generate side-effects, in this case by containing a print

statement. Because they make up the output of a program, their order cannot be changed. We show

an example below. We currently do not include checking for side-effects in library functions.

print(" first ");
if (someBoolean)
 print("maybe second");

In the fourth option we identify a dependency if a control flow statement is encountered that we cannot

move without consequences.

Using this relation, we are able to construct a directed acyclic graph (DAG) for a list of statements. A

directed acyclic graph is a dependency graph without cycles. The arrows in the graph indicate that a

statement depends on another prior statement, implying that no cycles can occur in the resulting

graph. As an example, the following list of statements and the corresponding graph is shown:

Strategy-based feedback for imperative programming exercises 44

Block: a = 1;
b = 2;
c = 3;
d = a + b;
e = b + c;
f = d + e;

Dependency

graph:

The following code converts a list of elements with dependencies into an intermediate list of nodes that

can be used to construct a graph. First we pair each item in the list with a unique number and we

reverse the list. We can now use a right fold to process the list from right to left with an empty list as a

starting value. The calcDeps function will be applied to a node and a list of previous nodes and adds

an adjacency list to this node with the preceding nodes that the node depends on.

list2nodes :: Deps a => [a] - > [NodeInfo a Int]
list2nodes list = foldr calcDeps [] numberedList
 where
 numberedList = reverse $ zip list [1..]

 calcDeps (item , nr) prevNodes = (item , nr, deps) : prevNodes
 where
 deps = map snd3 allDeps
 allDeps = filter (dependsOn item . fst3) prevNodes

Now a strategy for each node can be generated and stored in the nodes, from which we can build a

graph using the Data.Graph library.

list2stratG raph :: (Deps a, GenStrategy a) => LocationID - > Int - > [a] - >
 GenState (DependencyGraph (Strategy Program) Int)
list2stratG raph loc pref = liftM graphFromEd ges . mapM nodesWithS . list 2nodes
 where
 nodesWithS (stat, nr, dep) =
 liftM (\ s - > (s, nr, dep)) $ genStrat loc pref stat

From this graph we can build a strategy by listing all topological sorts of the graph. A topological sort is

a possible ordering of the vertices with the property that for every edge representing a dependency

from a node a to a node b, b precedes a in the ordering. The graph is converted into a left-factored

strategy using the strategy combinators for sequence (<*>) and alternatives (the choice <|>

combinator applied to multiple strategies). The corresponding code for building a strategy from a

dependency graph is:

Strategy-based feedback for imperative programming exercises 45

dependencyGraph :: IsStrategy f => DependencyGraph (f a) key - > Strategy a
dependencyGraph (graph, vertex2data, _) = g2s []
 where
 g2s seen
 | null reachables = succeed
 | otherwise = alternatives $ map makePath reachables
 where
 reachables = filter isReachable $ vertices graph \ \ seen
 isReachable = null . (\ \ seen) . (graph!)
 makePath vertex = (fst3 . vertex2data) vertex <*> g2s (vertex:seen)

The original graph with the resulting strategy is shown next.

Ĕ (a <*> ((b <*> ((c <*> (
 (d <*> e <*> f)
 <|> (e <*> d <*> f)))
 <|> (d <*> c <*> e <*> f)))
 ˱ƴ˲ ƽÃ ˱ǉ˲ ƛƾƾƾ
˱ƴ˲ ƽÂ ˱ǉ˲ ƛƾ
˱ƴ˲ ƽÃ ˱ǉ˲ ƛƾ

The strategy represents the following paths:

The conversion of a DAG into a corresponding strategy is a general solution that may be used in

domains other than imperative programming. Therefore, the function has been added to the Ideas

framework as a new strategy combinator.

Finally, we can use these functions to create the instance for GenStrategy for a list of statements.

instance (GenStrategy a, Deps a) => GenStrategy [a] where
 genStrat l oc pref = liftM dependencyGraph . list2strat Graph loc pref

Exercise strategy. The final step in generating a strategy from a set of model solutions is

combining the strategy from each model into one final strategy using the alternatives combinator. We

summarise the complete strategy generation process in the following figure.

Strategy-based feedback for imperative programming exercises 46

FIGURE 17 STRATEGY GENERATION PROCESS

5.3 RECOGNISING SOLUTIONS

From the strategy that is generated from model solutions, we can already recognise various solutions

to an exercise: multiple algorithms, variation in statement orders and different language constructs.

There are of course many more variations that we should incorporate. If a student works on a program

creating a solution that closely matches a model solution but is not exactly the same, the student

solution should be recognised. We need to further establish when a student program and a model

solution can be considered óequalô. We want to recognise if a student closely follows the solution and

corresponding strategy that the instructor devised. Furthermore, if the student deviates from this

strategy, we would still like to provide some response. The Ideas framework defines two relations on

solutions that support the feedback generation: similarity and equivalence. In the next sections we

elaborate on the implementation of these relations for the domain of imperative programming.

5.3.1 SIMILARITY
A model solution represents an algorithm to solve a particular programming problem. We have not yet

established what exactly distinguishes one algorithm from another algorithm. Moreover, the definition

of an algorithm lacks a clear answer and is subject to various interpretations. Blass et al. (Blass,

Dershowitz, & Gurevich, 2009) argue against the notion that algorithms are equivalence classes of

programs, implying that there is no óprecise equivalence relation capturing the intuitive notion of the

same algorithmô. They provide several examples to illustrate their point, stating that opinions,

subjective judgment and intended purpose influence this relation as well as a lack of clarity concerning

the transitivity property.

We need to define our own relation on algorithms that indicates if two solutions are similar, to support

the instructor in supplying a number of model solutions. The strategy to arrive at a particular model

solution already incorporates a number of variations, for instance the ability to recognise that the order

of two statements is irrelevant. These variations are recorded in the strategy, so the tutor is able to use

them in the feedback process. Other than that, there are many more minor variations that we do not

want to identify as different solutions. As an example, we consider the following two program

fragments:

Strategy-based feedback for imperative programming exercises 47

x = "*";
for(i = 0; i < 8; i++)
 print(x) ;

for(cnt = 1; cnt <= 8; cnt+=1)
{
 print("*") ;
}

In both solutions a looping structure is used to print a star symbol eight times. The differences (use of

an extra variable, different loop counters, different variable names) do not change the algorithm used

for this program and we would like to recognise the second program as a correct alternative for the

first.

We need a similarity relation to further determine if two programs are similar when matching the

student solution with a program derived from the exercise strategy. We define that two programs are

similar if their representation in abstract syntax is equal, after normalising each program. Thus we can

define the similarity relation å as:

()˰ :: Program - > Program - > Bool
pʦ ˰ Ðʧ ˮ ÎÏÒÍÁÌÉÓÅ Ðʦ == normalise p2

This relation is an equivalence relation, therefore the properties for symmetry, reflexivity and

transitivity all hold. Similar programs have the same canonical form after normalization. Normalisation

continuously attempts to perform a series of transformations until no more transformations can be

applied. When transforming a student program, we should consider that the student might not have

finished yet and that the program still contains holes. Certain transformations that can be performed

on complete programs, such as dead code elimination, cannot simply be applied to incomplete

programs. We should carefully consider which transformations can and cannot be applied to student

programs.

Because our Program data type contains several elements that are irrelevant for the semantics of the

actual program, such as annotations and location identifiers, we have defined the data type BProgram

that is free from this overhead. For statements and expressions we have created new types. A class

ToBase is defined to convert any data type into a corresponding BProgram.

class ToBase a where
 toB :: a - > BProgram

Instances are provided for Program and BProgram. Two BPrograms can easily be compared based on

their structure. This conversion is performed prior to the various normalisations, implying that the

normalisations are defined for the BProgram data type.

Xu and Chee (Xu & Chee, 2003) have identified 13 types of semantics-preserving variations (SPV). An

SPV changes the computational behaviours (operational semantics) of a program while preserving the

computational results (computational semantics). We incorporate some of these variations in different

components of the tutor (the abstract syntax, the strategy) as shown in Table 9. Some differences that

have not yet been captured in the abstract syntax or in the strategy are implemented in a

normalisation procedure.

Strategy-based feedback for imperative programming exercises 48

 DESCRIPTION AST STRATEGY NORMALISATION

SPV1 Different algorithms a

SPV2 Different source code formats a

SPV3 Different syntax forms a a a

SPV4 Different variable declarations a a

SPV5 Different algebraic expression forms a

SPV6 Different control structures a

SPV7 Different Boolean expression forms a

SPV8 Different temporary variables

SPV9 Different redundant statements

SPV10 Different statement orders a

SPV11 Different variable names a

SPV12 Different program logical structures

SPV13 Different statements a

TABLE 9 SEMANTICS-PRESERVING VARIATIONS

We will now discuss the transformations from the categorisation by Xu and Chee. We show the

variations for which we have provided a transformation function or a different solution in the parser or

strategy. We have implemented a number of transformations, but are by no means complete. To

increase the number of program variants that we can recognise, we would have to add several more

transformations. However, some transformations have deliberately been omitted because the resulting

program would deviate too much from the instructor solution.

SPV1 Different algorithms. We create a strategy for each model solution and combine them into

one strategy.

SPV2 Different source code formats. Differences in source code format, such as whitespace

and comments, are eliminated by the parser.

SPV3 Different syntax forms. Some variations in the syntactic form are eliminated by the parser,

such as the multiple ways to declare an array in Java, implying that the following statements are

similar:

int list[]; å int [] list ;

We also parse the following similar statements into the same internal representation:

int[] list = new int [] {1, 2, 3}; å int[] list = { 1, 2, 3 };

Another syntactical difference is using braces when there is only one statement in the body of another

statement, which is normalised in a transformation. As a result, the next two statements are similar:

Strategy-based feedback for imperative programming exercises 49

if (x) f(); å if (x) { f(); }

Initialising an array together with the declaration or initialising the array element by element after

declaration, as shown in the next example, are both allowed and are incorporated in the strategy. The

first option, however, has a higher preference.

int[] x = {1, 2, 3}; int[] x = new int [3];
x[0] = 1;
x[1] = 2;
X[2] = 3;

SPV4 Different variable declarations. We perform two normalisations with regard to the

declaration and initialisation of variables. We separate statements that contain multiple variable

declarations, such as óint x, yô. Next, we separate declarations that include an initialisation of the

variable, such as óint x = 0ô. Combining these two normalisations, the following two programs are

considered similar:

int x = 0, y = 1; å int x;
x = 0;
int y;
y = 1;

Note that in the program on the right a different ordering of statements is allowed. This variation is

taken into account by performing the two mentioned normalisations before generating a strategy for a

model program.

SPV5 Different algebraic expression forms, SPV7 Different boolean expression forms.

Several transformations are performed on the level of expressions using the simplifyExpr function.

Operators that are used as syntactic sugar, such as ++, --, += et cetera are eliminated and replaced by

an equivalent expression using basic operators. To compare integers, operators <=, > and >= are

rewritten using only the < operator. We show a fragment of this function that transforms expression

óx++ô into óx = x + 1ô and óx += yô into óx = x + yô.

simplify Expr :: Expression - > Expression
simplify Expr (Postfixed Incr a) = a .=. (a .+. lit1)
simplify Expr (Assignment AssignAdd a b) = a .=. (a .+. b)
ƛ

In this function we make extensive use of smart constructors such as .+. and .=. . We have specified

a large number of smart constructors for various operators. These smart constructors transform

expressions by simplifying them based on algebraic and logic rules and do constant folding, the

evaluation of expressions with constant operands. We show the smart constructor for multiplication in

which we first try to calculate the result if both operands are literals. If one operand is zero we return

zero and if one of the operands is one (the identity element of multiplication) we return the other

operand.

Strategy-based feedback for imperative programming exercises 50

(.* .) :: Expression - > Expression - > Expression
l .*. r
 | isLit l && isLit r = fromMaybe (l * r) (calc Multiplication l r)
 | l == lit0 || r == lit0 = lit0
 | l == lit1 = r
 | r == lit1 = l
 | otherwise = l * r

We show another example for the unary boolean operator ónotô. If possible, we eliminate the operator

or push it inwards.

(!.) :: Expression - > Expression
(!.) (Prefixed Not e) = e
(!.) (Lit Expr (BoolLiteral b)) = L itExpr $ BoolLiteral $ not b
(!.) (Infixed Equal l r) = Infixed NotEqual l r
(!.) (Infixed NotEqual l r) = Infixed Equal l r
(!.) (Infixed Less l r) = Infixed GreaterOrEqual l r
(!.) e = Prefixed Not e

For example, the expression: x += (3 + -2) will be simplified as follows:

x += (3 + - (2)) Ĕ x = x + (3 + - (2)) Ĕ x = x + (3 + - 2) Ĕ

x = x + 1

The resulting expression is similar to óx = 1 + xô, but this expression will not be transformed into óx = x +

1ô by the smart constructors. In addition we provide views to further standardise the format of

expressions. Views can be defined using the Ideas framework and are described in Section 2.1.3. As

an example, we show the view to convert an expression in the conjunctive normal form (CNF),

consisting of a match and a build function. The match function m returns a list of conjuncts using the

laws to convert to CNF and the build function recreates the expression by combining the conjuncts

with the AND operator.

cnfView :: View Expression [Expression]
cnfView = makeView (Just . m) build
 where
 -- De Morgan 1:
 m (Prefix ed Not (Infixed AND p q)) = m ((!.) p .||. (!.) q)
 -- De Morgan 2:
 m (Prefixed Not (Infixed OR p q)) = m ((!.) p) ++ m ((!.) q)
 -- Distributivity 1
 m (Infixed OR (Infixed AND p q) r) = m (p .||. r) ++ m (q .||. r)
 -- Distributivity 2
 m (Infixed OR p (Infixed AND q r)) = m (p .||. q) ++ m (p .||. r)

 m (Infixed AND p q) = m p ++ m q
 m p = [p]

 build xs = foldl (.&&.) trueLit xs

We transform an expression into CNF using this view and a function that sorts expressions. In the

sortExpr function literals are grouped together and pushed to one side so they can be evaluated.

Strategy-based feedback for imperative programming exercises 51

Other expressions such as identifiers and function calls are sorted alphabetically. Duplicate operands

will be removed by the nub function.

viewAsCNF :: Expression - > Expression
viewAsCNF = simplifyWith (nub . sortExpr) cnfView . simplifyExpr

We apply the various views one by one in a sequence of expression transformations on programs:

exprTrans :: BProgram - > BProgram
exprTrans =
 transformBi viewAsCNF
 . transformBi viewAsMul
 . transformBi viewAsSum
 . transformBi viewAs UnEq
 . transformBi viewAsEq

As a result, we now consider the following sample expressions similar:

!x && !y å ! (y || (x && true))

a+1+f()+b[4]+4+b[3]+s() å s()+b[3]+a+5+f()+b[4]

SPV6 Different control structures. We take the use of different control structures into account in

the generation of a programming strategy, such as a for loop that can be written as a while loop and

the if-then-else that can be inverted. We currently do not allow a for loop in a student solution if the

model specifies a while, because it is less obvious than the other way around. However, it will not be

ruled out as a future addition. We have also implemented a transformation that starts a local loop

variable at zero. This transformation is only applied if the loop has a certain common format, such as

in the next example:

for (int i = 1; i < 5; i++)
{
 f(i);
}

å for (int i = 0; i <= 5; i++)
{
 f(i + 1);
}

SPV8 Different temporary variables, SPV 9 Different redundant statements. Xu and Chee

use copy propagation, or forward substitution as they call it, to standardise the use of temporary

variables. For example, the following programs are considered equal and could both be written as

print("abc") .

a = "a";
b = "b";
print (a+b);

c = "ab";
print (c);

Because we do not need variables a, b or c anymore, they can be removed and are considered

redundant statements. Redundant statements are statements that can never be reached or

statements whose result is never used (dead code). Xu and Chee apply dead code removal in their

research to handle this variation.

Strategy-based feedback for imperative programming exercises 52

Copy propagation and dead code removal is not a problem if it is applied to finished programs.

However, some issues arise when a student submits an incomplete program. Dealing with difference

in temporary variables in normalisation implies that we cannot give hints that take the studentsô

variables into account. Let us consider some potential problems if we would implement the

transformations as described, using the following example:

Model: print(" hello "); Student: s = " hello ";

To recognise the studentsô incomplete submission we would have to remove the (so far) unused

variable assignment, which is dead code. As a result, the submission will be recognised and

introducing a print statement will be the next step.

We show another, slightly different, example:

Model: s = " hello ";
print(s) ;

Student: s = " hello ";

If the student asks for a hint, the hint will be to introduce the variable assignment, which was already

done by the student. A solution might be to not remove unused variables but mark them in some way,

and relaxing the matching of two canonical programs. If the same variable was introduced in the

model as well as in the student solution, we recognise it. If the variable is unknown, it will be ignored.

The downside of this solution is that we would not recognise an erroneous assignment, such as s =

"goodbye".

Model: s = " hello ";
print(s) ;

Student: print(?);

In this final example, using the same algorithm as described, the tutor would suggest replacing the

hole by an identifier. This is not a correct suggestion, since the student has not created a variable yet.

Adding this variation to the tutor requires further research. It should be decided to focus on

normalisation, possibly compromising on the quality of hints, or finding a way to include the use of

temporary variables in the strategy while keeping the solution space and strategy size manageable.

Creating strategies for every possible set of intermediate variables is an unrealistic solution. However,

creating strategies for a limited set of variants is a possibility.

SPV10 Different statement orders. This variation is dealt with in the generation of a strategy.

SPV11 Different variable names. The variables in student and model programs are renamed in a

normalisation. The complete program is traversed and all variables are renamed to v1, v2 et cetera.

We use a state monad with a counter and a map with old and new names. Whenever we encounter a

variable we have not seen before, we generate a new variable name, transform the expression and

store a mapping from old name to new name in the state. If we come across a variable that is already

in the map, we rename it to the new value.

SPV12 Different program logical structures. An example of this variation is that some

statements can be placed either inside or outside a loop. We do not recognise these variations at the

moment.

Strategy-based feedback for imperative programming exercises 53

SPV13 Different statements. Xu and Chee use a óvariation-learning processô that is executed in a

training stage to identify the final semantic similarities. Evaluation of expressions and instructor input is

used to identify and store equivalent and non-equivalent component pairs. In our tutor we do not use

these advanced methods, but we do allow an instructor to provide alternatives for a specific statement

in an annotation without the need to create an entire new model solution, which is explained in Section

5.4.3.

5.3.2 EQUIVALENCE
When we encounter student programs in which no model solution can be recognised, we would still

like to provide the student with some feedback. If we cannot recognise the inner structure, we are left

with looking at the output of the program. If the output of the student program is equal to the output of

a model solution, we can at least inform the student that the solution produces correct results,

although we cannot comment on the algorithm used. This algorithm may either be a potential addition

to the set of model solutions, or an inefficient or inelegant solution.

Testing would be an obvious tool to check if two programs produce the same output. Currently the

prototype does not support functions and focuses on writing output to a console. For this reason an

evaluator has been implemented that computes the output of a program based on print statements.

We also have to take into account that incomplete programs may be submitted. When a student has

correctly produced the first part of the output, he or she is on the right track. We therefore do not

define an actual equivalence relation but instead we use a relation to define if the output of a program

is a prefix of the output of a model solution. This relation is not an equivalence relation because the

symmetry property does not hold. We show a simplified version of this relation in which we have

omitted dealing with evaluation errors.

prog ram <== sol = evaluate prog ram `isPrefixOf` evaluate sol

This relation holds for the following programs that have equal output:

x = "*" ;
for(i = 0; i < 8; i++)
{
 print(x);
}

<== print("********");

In the next example the output of the student program on the left is a prefix of the model solution on

the right:

print("a"); <== print("abc");

This somewhat deviating definition is related to the fact that in many other, mainly mathematical,

domains student submission are expressions that should stay the same every step towards the

solution. A solution that is not finished yet is most likely not the same as the final submission. In the

next section we discuss how this relation is used in the diagnosis of student programs.

The evaluator itself also takes into account that the program may not be finished and may contain

holes. During evaluation a state is kept containing the values of known variables, the output so far and

a boolean (complete) indicating if no holes were encountered yet. After coming across a hole in an

expression, this boolean is set to false. From there on, nothing will be written to the output anymore

although all subsequent statements will still be evaluated for possible errors.

Strategy-based feedback for imperative programming exercises 54

data EvalState = EvalState
 {
 environment :: Map VarName Literal ,
 output :: String,
 complete :: Bool
 }

The type of the evaluator is as follows. The return type may be an error if the code could not be

evaluated, for example when encountering a type error or a reference to an unknown value.

Evaluation can be performed on any type that can be transformed into a BProgram.

evalProgram :: ToBase a => a - > Either EvalError String

If we would expand the prototype to support method declarations, we might be able to use (an

expansion of) the evaluator for testing. An obvious choice would be to use an existing testing tool, but

these tools will not support incomplete programs with holes. Therefore a custom made solution should

be developed which is not within the scope of this thesis.

5.4 GENERATION OF STRATEGY-BASED FEEDBACK

Using the components described in the previous section, we can now define an exercise for the

domain of imperative programming. We use the Exercise data type from the Ideas framework to

provide our parser, pretty printer, the similarity and equivalence relation, an exercise description

loaded from a text file, a unique identifier and the exercise strategy. Students can do the exercises by

creating a solution and asking for feedback from the domain reasoner. We offer two feedback services

that were originally designed for the Ask-Elle tutor, which we reuse for the domain of imperative

programming applying some adjustments and additions:

¶ DEEPDIAGNOSE for diagnosing a student submission.

¶ ALLHINTS for providing a tree structure with hints at various levels.

Some meta services from the framework are also provided, such as loading a list of available

exercises. The feedback services are described in the next sections, followed by a section on the

possibilities to adapt the calculated feedback.

5.4.1 DIAGNOSIS
A student can submit a (partial) solution to a programming problem at any time. A student might even

submit a finished solution straight away. After submitting, the student will receive a message indicating

if the work was correct or if a mistake has been made. In the Ideas framework, a Diagnosis data type

is available to represent the result of the diagnosis of a submitted student program, which is described

in Section 2.1.2.

Because the DIAGNOSE service from the Ideas framework can only recognise single steps in a strategy,

it is considered unusable in the programming domain. In programming we want to expand our program

constantly while working towards the solution. In the Ask-Elle tutor the DEEPDIAGNOSE service has

been added to recognise multiple steps (Gerdes, Heeren, & Jeuring, 2012). We have found that this

service can be used for imperative programming as well, although we need to address some issues

first.

We describe the usage of the various diagnoses in Ask-Elle together with the changes for our tutor in

Table 10.

Strategy-based feedback for imperative programming exercises 55

DIAGNOSIS ASK-ELLE IMPERATIVE PROGRAMMING TUTOR

Buggy No buggy rules have been defined. Likewise.

Not

equivalent

Unused, equivalence always returns true,

although testing is implemented

elsewhere.

Because an imperative program can be

expanded step by step, we do not

compare the previous and current

submission. We determine if the output of

the current program is not a prefix of the

output of a model solution, in which case

an error was made and this diagnosis is

returned.

Similar The current submission and the previous

submission can be transformed into the

same canonical form.

Likewise, although we pass an empty state

instead of the previous state to the service

because we allow students to remove and

replace statements in a program.

Expected The submitted program (still) follows the

strategy.

Likewise.

Detour No changes from the original diagnose

service (see 2.1.2). Only the application of

one rule can be recognised.

The same, but only different types of

statements can be recognised because the

append rule does not distinguish the

different types of expression statements.

Correct The textual diagnosis service uses

QuickCheck to determine if the program

passes a number of tests.

The output is a prefix of the solution but we

cannot recognise what strategy the student

is following.

Unknown QuickCheck testing is unable to ascertain

the correctness of the solution.

Unused.

Wrong rule Unused. Likewise.

TABLE 10 DIAGNOSES FOR PROGRAMMING

The DEEPDIAGNOSE service (Gerdes, Heeren, et al., 2012) checks if the submission follows the

exercise strategy by creating a list of valid prefixes. A prefix is an encoded list representing a

sequence of rules that have already been applied. There should be at least one valid prefix that results

in the program the student submitted. The list of valid prefixes is created by calculating all possible

prefixes (intermediates) and keeping the ones that are similar to the student submission. To calculate

these intermediates, a tree is constructed with prefixes in the nodes. This tree is created in a special

search mode to reduce the size of the tree. To discard intermediates that can never be a valid prefix,

the corresponding tree branches are cut. We have to address two issues if we want to use this service

for imperative programming: the search mode and tree pruning.

Search mode. DEEPDIAGNOSE uses a search mode to decrease the solution space of intermediate

solutions. For example, the interleave operator causes a large number of duplicate intermediate

solutions, as demonstrated in these two different refinement orders:

Strategy-based feedback for imperative programming exercises 56

f(?, ?, ?);
Ě

Ĝ

f(1, ?, ?); Ĕ f(1, 2, ?); Ĕ f(1, 2, 3);

f(?, ?, 3); Ĕ f(?, 2, 3); Ĕ f(1, 2, 3);

The resulting function call can actually be reached in six different ways. If a student submits the

complete call in one submission, the order in which this was done is irrelevant. DEEPDIAGNOSE reduces

the search space by changing the semantics of the interleave operator so all intermediate states can

only be reached by a single path. In the preceding example, in which only refinement rules are

applied, this behaviour is fine and even desirable because it increases the performance of the service.

In a different situation however, this causes problems:

a = 1; Ĕ a = 1;
b = 2;

b = 2; Ĕ b = 2;
a = 1;

The two statements are not dependent so they can be added to the program in any order. However,

the resulting programs have a different form. The search mode recognises that rule óappend-aô and

óappend-bô can be interleaved and only saves the prefix óappend-a, append-bô, discarding prefix

óappend-b, append-aô. If a student submits the bottom program on the right in one submission, it will

not be recognised by the diagnose service because the resulting program from prefix óappend-a,

append-bô is not similar to the student submission. To prevent this from happening we only allow the

deletion of paths when refinement rules are involved. All solutions will now be recognised and we still

benefit from the reduction in search space for refinement rules. An alternative might be to define an

insertion rule instead of an append rule specifying a specific location and not just a block. We have not

explored this option as of yet, but controlling the search space for imperative programs is interesting

for future research.

Tree pruning. Pruning is used to delete entire solution paths from the tree. All branches that are not

predecessors of the current student submission are cut from the tree. An isPredecessor relation is

used for tree pruning which we have defined for our Program data type as follows:

isPredecessor :: Program - > Program - > Bool
isPredecessor p1 p2 = normalise p1 ~> normalise p2

After normalising both programs, we determine if the first program can become the second program.

The relation is both reflexive and transitive, but not symmetric. The overloaded function ~> is defined

on statements, expressions, lists and other data types. As an example, an if statement can become

another if statement if the first condition can become the second condition and the first body can

become the second body. An if statement cannot be the predecessor of any other statement.

(If e1 s1) ~> (If e2 s2) = e1 ~> e2 && s1 ~> s2
(If _ _) ~> _ = False

A list of statements can be expanded with more statements:

Strategy-based feedback for imperative programming exercises 57

[] ~> _ = True
(x:xs) ~> (y:ys) = x ~> y && xs ~> ys
xs ~> [] = False

A hole can become any expression:

HoleExpr ~> _ = True

However, there are some more issues when expressions contain holes. Let us consider a model

solution to some exercise that contains the following expression:

a * (b + c);

The corresponding prefix tree represents all intermediate states, of which we show a fragment:

¶ ?

¶ ? * ?

¶ a * ?

¶ a * (? + ?)

¶ a * (b + ?)

¶ a * (b + c)

¶ ƛ

¶ ? * (? + ?)

¶ ƛ

At some point a student might come up with the following incomplete expression and asks for a

diagnosis:

? * (? + ?) ;

Applying the distribution rule, the student expression will be normalised to:

(? * ?) + (? * ?)

This expression has a different structure than ó? * ?ô in the tree, but if we cut this node the expression

that is similar to the original student submission would be lost. This issue is relevant for all kinds of

arithmetic and logic expressions, which we normalise into a canonical form. Therefore, we consider all

arithmetic and logical expressions that contain at least one hole to be a predecessor of any other

expression. In this particular example, all intermediate states except the leaves will remain in the tree.

The resulting code for the ~> function is shown next:

Strategy-based feedback for imperative programming exercises 58

(Call i1 args1) ~> (Call i2 args2) = i1 == i2
 && length args1 == length args2
 && and (zipWith (~>) args1 args2)
(ArrayAcc i1 idx1) ~> (ArrayAcc i2 idx2) = (i1, idx1) ~> (i2, idx2)
(Property i1 p1) ~> (Property i2 p2) = (i1, p1) ~> (i2, p2)
ƛ
pre ~> post
 | isStrict pre = False -- Call, ArrayAcc , Property etc return True
 | containsHole pre = True
 | otherwise = pre == post

The relation is less flexible for some expressions, which can be seen in the first lines. For example, if

the expression is a function call, the function names should be equal, as well as the number of

arguments. Next we check the arguments which may be refined in any order according to the strategy.

Every single argument should be a predecessor of the corresponding argument in the model. When

we arrive at the arithmetic and logic expressions, we check if the predecessor contains holes. If such

an expression contains at least one hole, we state that the expression can become any other

expression. If the predecessor is completely refined we check if it is equal to the successor, because

normalisation should have converted both expressions into the same canonical form.

5.4.2 HINTS
To provide textual hint messages labels are used to annotate rules and sub strategies. During the

generation of a strategy for an exercise, labels are attached to certain parts of the strategy. For

imperative programs, the following labels and other descriptions are inserted automatically:

¶ Rules have an identifier with a description, for example óIntroduce break-statementô for an

append rule and óExpand ? to identifierô for a refine rule.

¶ Sub strategies are labelled to provide more specific feedback. We provide an example for a

for statement, that has the following format:

for (i nit; cond; incr) body;

During the generation of a strategy, the sub strategy for init will be labelled with óloop-initô, the

sub strategy for cond with label óloop-conditionô, the sub strategy for incr with óloop-incrô and

the sub strategy for body with óloop-bodyô. We show a fragment of the strategy generation for

a for statement in which we return a labelled strategy.

return $ appendFor
 <*> label "loop - init" init'
 <*> (label "loop - condition" (atomic $ sequenceS cond')
 <%> label "loop - incr" (atomic $ sequenceS incr'))
 <*> label "loop - body" body'

The corresponding textual descriptions for labels are stored in a text file. The Ideas framework

supports the parsing of these files into a feedback script. This script is used to generate textual

feedback messages. The Ideas framework provides a Script data type that stores textual

representations for several components such as rules, strategies and diagnoses. The input for the

script used in Java exercises is loaded from a text file that can be manually adjusted by an instructor.

We show a small fragment from this feedback text file:

feedback loop - incr = What to do after each loop iteration?
feedback assign = What value should the variable get?
feedback args = What information should you pass to the function?

Strategy-based feedback for imperative programming exercises 59

The ALLHINTS service from the Ask-Elle tutor is used in our tutor to generate a tree structure with hints

on how to proceed, as shown in the following example:

¶ Introduce a loop stat ement

¶ Introduce a for statement.

¶ Type cod e for (?; ?; ?) {}

¶ Initialise a variable for a while statement

¶ Expand ? to a variable assignment.

¶ Type code i = ?;

The hints are based on the steps defined in the exercise strategy and the corresponding labels. The

branching indicates the choice between different steps and the depth of a node indicates the level of

detail of the feedback message. The ALLHINTS service in its turn uses the ALLFIRSTS service which is a

rewrite for Ask-Elle of the original service from the framework. The adjusted service works with a list of

prefixes to avoid the issue of model solutions sharing their first step, as described in Section 2.2.4.

Both services are slightly adjusted because we currently do not support the use of a óname mapô. A

name map stores a mapping between identifiers used by the student, such as variable names, and the

corresponding identifiers from the normalised student program.

In this section and the previous section we have shown that the services developed for the functional

programming tutor Ask-Elle can also be used for imperative programming. Moreover, the services are

generic, in the sense that they support doing multiple steps at once, regardless of the nature of the

steps. We propose moving the services to the Ideas framework to make them more widely available.

However, some additions and alterations to the services are necessary. Some functions used by the

services, such as isPredecessor , should be made generic by leaving the implementation to the

domain that uses them. We should note that this relation might not be useful to domains in which

doing multiple steps at once is not desirable. Additional features such as name mapping could be

made optional. Furthermore, the code for some diagnoses of the DEEPDIAGNOSE service is equal to the

standard DIAGNOSE service. We could investigate if and how a diagnose service can be dynamically

composed of functions for the different Diagnosis types.

5.4.3 ADAPTING FEEDBACK
If an instructor wants to use our tutor for a particular exercise, the instructor only needs to provide a

set of model solutions. Feedback will be calculated automatically based on these solutions. However,

an instructor may sometimes want to provide additional information to further guide the process of

solving an exercise. A number of instructor facilities are implemented in the prototype. The script that

stores the textual representations for strategy labels and other feedback messages can easily be

adjusted by an instructor. The model solution that the instructor provides can be customised with

several annotations. These annotations enable instructors to create tailor-made exercises for their

students.

The Ask-Elle tutor introduced the concept of annotated instructor solutions (Gerdes, Heeren, et al.,

2012). We have adopted a number of these annotations in our tutor for imperative programming. We

also propose some adjustments. Annotations can be added to the model code inside comments so

they do not cause compiler problems. The Java parser is able to recognise these comments. The

Program data type has been adapted to accommodate the annotations. We will describe the features

that are currently available in the prototype.

General solution information. A model solution can be annotated with general information. At the

top of the model solution the following annotation can be added:

Strategy-based feedback for imperative programming exercises 60

/* DESC " Implement the Quicksort algorithm " PREF 2 DIFF Hard */

This information can be stored in a Program:

data Program = Program
 {
 body :: Statement,
 desc :: String,
 difficulty :: Diff iculty ,
 preference :: Int
 }

We label the strategy for a particular model program with the solution description. The solution

difficulty is currently unused. When we take the student level into account we might exclude certain

solution paths because they are either too difficult or too easy. We use the preference number in rule

ordering to show the hints that lead to the most preferred solution path first.

Feedback messages. The FEEDBACK-annotation can be used to provide more information about the

semantic meaning of a statement in the context of a specific assignment, for example:

/* FEEDBACK Calculate the average of the two results */
double avg = (x + y) / 2;

Another example is:

/* FE EDBACK Create a loop through all even numbers below 100 */
ÆÏÒ ƽÉ ˮ ʣƘ É ˱ ʦʣʣƘ É ˩ˮ ʧƾ ƛ Ƙ

The feedback text will be attached to the statement that follows the annotation. The Statement data

type has been extended in the following way:

data Statement = ƛ | Feedback String Statement

When we derive a strategy from a statement that is annotated with a feedback message, we create a

new unique identifier for this label and attach it with the text as a description to the corresponding

strategy for the statement itself.

genStrat loc pref (Feedback msg stat) - >
 liftM2 attachFb getNextNr (genStrat loc pref stat)
 where
 makeLabel = describe msg . newId . ("fb." ++) . show
 attachFb id = toStrategy . label (makeLabel id)

Mandatory language constructs. Occasionally an instructor may devise an exercise to train

using a particular new language construct. For example, when introducing the for statement, the

students should practise with this statement and not revert to a while statement that they might already

know. Because the strategy generator by default attempts to include as many variants as possible into

the strategy, the generator should be instructed when this is not desirable. The instructor is able to do

this by annotating a statement in a model solution using the MUSTUSE-annotation.

Strategy-based feedback for imperative programming exercises 61

/* MUSTUSE */ ÆÏÒ ƽÉÎÔ É ˮ ʦƘ É ˱ˮ ʦʣƘ É˩˩ƾ ƛƘ

The Statement data type has been extended in the following way:

ÄÁÔÁ 3ÔÁÔÅÍÅÎÔ ˮ ƛ ƴ -ÕÓÔ5ÓÅ 3ÔÁÔÅÍÅÎÔ

This annotation will instruct the strategy generator not to include the option to create a while statement

as an alternative. In Ask-Elle this annotation is used to prohibit the recognition of the underlying

implementation of a library function instead of the library function itself. In the imperative tutor this

annotation is currently used to enforce the use of a for or while statement and can be used for other

language constructs in the future.

Alternatives. In some cases we want to allow an alternative for a single statement. Creating an

entire new model solution for this is too much work and does not make sense for just one line of code.

Using the ALT-annotation, we can provide an alternative for one specific statement that follows the

annotation. As an example, we use the annotation to allow a library function instead of oneôs own

implementation. Note that we currently restrict the implementation to one statement, but could expand

this to multiple statements in the future.

/* ALT x = Math.max(a,b); */
if (a > b)
 x = a;
else
 x = b;

The Statement data type has been extended with an Alt constructor that accepts a list of statements

of which either one is allowed.

ÄÁÔÁ 3ÔÁÔÅÍÅÎÔ ˮ ƛ ƴ Alt [Statement]

If we encounter this constructor while deriving a strategy, we will generate a strategy for each

statement and combine them using the alternatives combinator.

genStrat loc pref (Alt stats) =
 liftM alternatives $ mapM (genStrat loc pref) stats

Feedback level. When generating a strategy for a set of models, a level is passed as a parameter to

indicate the granularity of the steps in the strategy. For example, a particular exercise may be targeted

at more advanced students who do not need feedback at a very low level. As a default, all strategies

are generated at the lowest level of one. Strategies for level two do not include refinement rules that

help developing a composed statement step by step. Not including refinement rules implies that a

student can no longer use the hole (?) symbol as a placeholder for unknown expressions.

Let us consider the following model program as an example:

if (x > 10) f();

The feedback level can be set in a configuration file in the exercise folder. If the level is set to one, the

first hints are:

Strategy-based feedback for imperative programming exercises 62

¶ Introduce an if statement.

¶ Type code if (?) {}

If the level is set to two, the hints are:

¶ Introduce an if - statement with condition: an expression with operator >.

¶ Type code if (x > 10) {}

In the code for the genStratWithLoc function we generate a new hole and a corresponding strategy

for an expression if the level is one. For level two (other levels are currently not supported) we simply

return the complete expression paired with the succeed strategy from the framework that always

succeeds, to prevent adding refinement steps to the resulting strategy.

genStrat WithLoc pref expr = getLevel >>= makeHoleAndEx
 where
 makeHoleAndEx level
 | level == 1 = do
 loc < - getNextNr
 expr' < - genStrat loc pref expr
 return (HoleExpr loc, expr')
 | otherwise = return (expr, succeed)

A possible expansion is to omit adding certain labels so they will not appear in the hint tree.

Strategy-based feedback for imperative programming exercises 63

6 VALIDATION

We have proposed a number of questions in Section 4.3 to validate the results of this research, which

we repeat here for convenience:

a. Are student programs that do or do not follow a known strategy recognised as such?

b. Can a step (or multiple steps) in a student program be recognised as either following a known

strategy or not?

c. Do the generated hints lead the student to a solution?

d. Does the generated feedback reflect the annotations in model solutions?

We collected data from first year IT-students from Windesheim University of Applied Sciences during

their Web programming course from September to November 2013 and their Java programming

course from February to April 2014. The students are both full-time and part-time students and are

enrolled in one of the four IT-studies of Windesheim: óSoftware Engineeringô, óBusiness IT and

Managementô, óInfrastructure Design and Securityô and óEmbedded Software and Automationô. We

asked the students to solve a number of programming problems and submit their (either complete or

incomplete) solutions. We have used these solutions for the validation of our research.

In this chapter we answer the validation questions and describe how we arrived at the conclusions.

Our test suite is described in Section 6.1. In Section 6.2 we show two tutoring sessions that give an

impression of the behaviour and capability of the prototype. This demonstration provides answers for

validation questions b, c and d. In Section 6.3 we describe the analysis of a large number of sample

programs created by the students, contributing to question a. In this analysis we study the large

solution space and show the variations our tutor supports. We conclude in Section 6.4 with

summarizing the answers to the validation questions.

6.1 TESTING

We have created a test suite to automate the testing of various cases. Test data was both invented

and generated randomly (see Section 5.1). Our test suite includes:

¶ Tests for the normalisations (Section 5.3.1).

¶ Tests for recognising variants that are included in the generation of a strategy (Section 5.2.2).

¶ Tests for instructor annotations (Section 5.4.3).

¶ Tests for the evaluator (Section 5.3.2).

¶ Tests for recognising steps with different granularity.

¶ Tests for recognising steps in different orders.

¶ Simple performance tests for dealing with larger programs.

¶ Limited tests that check the number of expected hints.

6.2 TUTORING SESSIONS

6.2.1 PHP TUTORING SESSION
Our first session revolves around a small and simple PHP exercise with the following description:

óWrite code to show the following string on the screen:

*+**+***+****+*****+******+*******+********+*********+**********+ô

The exercise was included in the set of web programming exercises for which we collected data. We

provide two model solutions. The model solutions are not annotated because we currently do not

support annotations in PHP. The first model uses two nested loops:

Strategy-based feedback for imperative programming exercises 64

<?php
 for($i = 1 ; $i < = 10; $i++)
 {
 for($ j = 1 ; $j < = $i; $j++)
 {
 print("*");
 }
 print("+");
 }
?>

The second model solution uses one loop and a library function:

<?php
 for ($i = 1; $i <= 10; $i++)
 {
 print str_repeat("*", $i) . "+";
 }
?>

For this session we have used the command line interface to our tutor. The solution we show in the

session is selected from the data set of student solutions. Because we do not know how the student

arrived at this solution, we simulate a path the student could have taken. After each student

submission we show the diagnosis of the tutor together with the tree of hints. The leaves always show

the program code that should be typed and will be omitted later in the demonstration.

Student The student does not know how to start and asks for a hint.

Tutor Both a for and a while statement are suggested:

Hints:

¶ Introduce a loop stat ement

¶ Introduce a for statement.

¶ Type code for (?; ?; ?) {}

¶ Initialise a variable for a while statement

¶ Introduce a variable assignment .

¶ Type code i = ?;

Student The student chooses to implement a for statement:

for (?;?;?) { }

Tutor Correct
Hints:

¶ What to do before looping?

¶ Expand ? to a variable assignment.

Student The student initialises a loop variable in one step.

for ($i = 1;?;?) { }

Strategy-based feedback for imperative programming exercises 65

Tutor Correct
Expanding both parts of the for loop is now permitted:
Hints:

¶ When to continue looping?

¶ Expand the second part of the for - statement

¶ Expand ? to an expression with operator <=.

¶ What to do after each loop iteration?

¶ Expand the third part of the for - statement

¶ Expand ? to an expre ssion with postfix operator ++.

Student The student tries to complete the loop condition, but makes a mistake.

for ($i = 1; $i < 10 ;?) { }

Tutor We lost you

Student The student fixes the mistake.

for ($i = 1; $i <= 10; $i++) { }

Tutor We can recognise both model solutions in the hints:
Correct.
Hints:

¶ What to repeat?

¶ Introduce a for - statement.

¶ Initialise a variable for a while statement

¶ Introduce a variable assignment .

¶ Introduce a print - statement.

Student The student chooses the third option and already knows that two components should

be concatenated and printed.

for($i = 1; $i <= 10; $i++) {

 print ? . ?;

}

Tutor Correct.
Hints:

¶ What to repeat?

¶ What do you want to print?

¶ Expand ? to a method call to str_repeat with 2
params.

¶ Expand ? to a literal "+".

Student The student refines both holes.

for($i = 1; $i <= 10; $i++) {

 print str_repeat(?, ?) . '+' ;

}

Strategy-based feedback for imperative programming exercises 66

Tutor Correct
Hints:

¶ What to repeat?

¶ What do you want to print?

¶ What information should you pass to the function?

¶ Replace the ? in the 1st argument

¶ Expand ? to a literal "*".

¶ Replace the ? in the 2nd argument

¶ Expand ? to an variable.

Student The student finishes the program.

for($i = 1; $i <= 10; $i++) {

 print str_repeat('*' , $i) . '+' ;

}

Tutor Correct
You are done!

6.2.2 JAVA TUTORING SESSION
We continue with another exercise that was part of the set of Java programming exercises for which

data was collected. The exercise has the following description:

óCreate an array with the following sequence of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

We are going to check if this is the correct sequence of Fibonacci numbers. The Fibonacci sequence

starts with 1, 1, and every next number should be the sum of the two previous numbers.

Write code to perform this check. You do not have to check the first two numbers. Print the word

'correct' or 'incorrect' on the screen to check the result.ô

We initially created one annotated model solution:

/* DESC "Use a loop to check the numbers in an array" PREF 1 DIFF Easy */

/* FEEDBACK Use the {} - syntax to put the fibonacci numbers in an array */
int [] fib = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144};
/* FEEDBACK Declare a boolean to store the result of the checks */
boolean isCorrect = true;

/* FEEDBACK Create a loop with a counter starting at 2 and ending at th e end of
 the array */
for (int i = 2; i < fib.length; i++)
{
 /* FEEDBACK Check if the number at the index is not the sum of the numbers
 at the previous two indices */
 if (fib[i] != fib[i - 1] + fib[i - 2])
 {
 isCo rrect = false;
 }
}
/* FEEDBACK Check the boolean value and print the right text accordingly */

Strategy-based feedback for imperative programming exercises 67

if (isCorrect)
{
 System.out.println(" correct ");
}
else
{
 System.out.println(" incorrect ");
}

For this session we use the web interface. In the web interface the student can select an exercise from

a list of available exercises (Figure 18). Figure 19 shows a screenshot of the editor that has syntax

highlighting where the solution can be typed. There are buttons that generate templates for some

statements on the top and buttons to ask for feedback on the bottom.

In the web interface we show the first option (branch) of the tree when the student first asks for help

(Figure 20). The student has the opportunity to óexpandô on a specific path and view a hint with more

detail. If other options are allowed, the óalternativeó link will provide a hint on a different solution path.

In this session we show screenshots of the hint tree, sometimes omitting certain hints such as showing

the actual code that should be typed.

FIGURE 20 HINTS IN THE WEB INTERFACE

FIGURE 18 WEB EXERCISE SELECTION

FIGURE 19 WEB EDITOR AND FEEDBACK BUTTONS

Strategy-based feedback for imperative programming exercises 68

Student The student does not know how to start and asks for a hint.

Tutor The solution description of the model is always shown at the top of the hint tree.

Student The student uses a different syntax and a different variable name for the array
declaration.

int nrs[] = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144};

Tutor Correct.

Student The student continues programming, starts a while loop and asks for a hint.

int nrs[] = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144};
boolean isCorrect = true;

int i = 2;
while(?) {

}

Tutor The start of the while loop is recognised.

Student The expression in the if is slightly different from the model solution.

ƛ
while(i < nrs.length) {

 if (nrs[i] != nrs[i - 2] + nrs[i - 1]) {
 isCorrect = false;
 }
 i++;
}

Tutor Correct.

Student The student switches the true and false branches of the if statement.

Strategy-based feedback for imperative programming exercises 69

ƛ
if (!isCorrect)
 System.out.println("incorrect");
else ;

Tutor Correct.

Student The student makes a mistake.

ƛ
if (!isCorrect)
 System.out.println("incorrect");
else
 System.out.println("incorrect");

Tutor

Student The student fixes the mistake and has completed the exercise.

Tutor

6.3 ANALYSING STUDENT PROGRAMS

The set of collected student programs provides us with information about different solutions. Although

we do not know how an individual student arrived at his or her solution, it is still relevant to analyse the

submissions to find out the diversity and to determine to what extent our tutor can handle this diversity.

Because it is not our intention to recognise as many variants of a program as possible, we look at how

many programs we can recognise that we actually want to recognise in our tutor because they closely

match the instructorôs solution. This is a different approach from most assessment tools. The results

give us an indication of the capabilities of the tutor and provide information on the variations that

actually occur in student programs that we have not taken into account yet.

 We collected student solutions for six different exercises, four of which are exercises from a web

programming course in PHP and two are exercises from a Java course. We have found that not all of

these exercises are currently suitable for validating our tutor for two reasons:

¶ Input can be chosen by the student by assigning a random value to a variable. As a result, our

tutor would consider all solutions to be different.

¶ The exercise requires the student to write a function definition, which is not supported by the

tutor.

For our analysis we only take the exercises we consider suitable into account.

6.3.1 PHP EXERCISE ANALYSIS
For two PHP exercises we checked the solutions using our tutor. The PHP exercises are relatively

simple; their solution consists of few lines of code containing basic constructs such as loops, variable

Strategy-based feedback for imperative programming exercises 70

assignments and conditional statements. The results can be viewed in Table 11. Our tutor is capable

of recognising 75% (for the first exercise) and 33% (for the second exercise) of the solutions that we

consider similar to a model if they would be manually assessed. Unfortunately there were very few

students with a decent solution for the second exercise. No false positives were identified. There were

even more correct solutions, but they used different algorithms for which we should have added a

model solution.

CHECK EXERCISE 1

óSTARSô

EXERCISE 2

óSUMô

EXPLANATION

Submitted solutions 60 49

Model solutions 2 2

Tutor parser 54 44 A small number of programs contain syntax errors.

We do not include these solutions. Most programs

that could not be parsed contain language constructs

that are not yet supported by the prototype, such as

function definitions and enhanced for loops.

Recognised as

similar to model by

tutor

24 2 More precisely, we mean similarity to a program that

is the result of following the strategy for the exercise.

Similar to model by

hand

32 6 The submitted solutions were manually assessed. A

solution was put in this category if it was close to a

model solution.

Correctly recognised 75% 33% This (rounded) percentage represents how many

solutions were actually recognised by the tutor in

comparison to the number the instructor marked as

similar to model.

TABLE 11 PHP STUDENT PROGRAM ANALYSIS

6.3.2 JAVA EXERCISE ANALYSIS
In one of the tutoring sessions we used the Java exercise in which an array should be checked if it

contains the valid Fibonacci sequence. This exercise is more complex and has a larger solution than

the PHP exercises. We have used this exercise to assess the possibilities and limitations of the tutor in

its current form, but also to analyse the diversity in student solutions. Looking at the submissions, it

was clear that the students had quite some difficulties solving this exercise with very limited to no help

from an instructor.

After analysing a large number of student solutions it became clear that many students had

understood the exercise differently than it had been intended. Instead of printing the correctness of the

entire sequence, they printed the result of every single number check. Therefore we decided to include

another (suboptimal) model solution to extend our solution space:

